Advertisement

The European Physical Journal C

, Volume 68, Issue 3–4, pp 567–572 | Cite as

Dynamics of tachyon and phantom field beyond the inverse square potentials

  • Wei FangEmail author
  • Hui-Qing Lu
Regular Article - Theoretical Physics

Abstract

We investigate the cosmological evolution of the tachyon and phantom-tachyon scalar field by considering the potential parameter \(\Gamma(=\frac{VV''}{V'^{2}}\)) as a function of another potential parameter \(\lambda(=\frac{V'}{\kappa V^{3/2}}\)), which correspondingly extends the analysis of the evolution of our universe from a two-dimensional autonomous dynamical system to the three-dimensional case. It allows us to investigate the more general situation where the potential is not restricted to an inverse square potential. One particular result is that, apart from the inverse square potential, there are a large number of potentials which can give the scaling and dominant solution when the function Γ(λ) equals 3/2 for one or more values of λ *, as well as that the parameter λ * satisfies certain conditions. We also find that for a class of different potentials the possibilities for the dynamical evolution of the universe are actually the same and therefore undistinguishable.

Keywords

Dark Energy Autonomous System High Energy Phys Sami Cosmological Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mazumdar, S. Panda, A. P’erez-Lorenzana, Nucl. Phys. B 614, 101 (2001) zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    A. Sen, J. High Energy Phys. 0204, 048 (2002) CrossRefADSGoogle Scholar
  3. 3.
    A. Sen, J. High Energy Phys. 0207, 065 (2002) CrossRefADSGoogle Scholar
  4. 4.
    Y.S. Piao, R.G. Cai, X.M. Zhang, Y.Z. Zhang, Phys. Rev. D 66, 121301 (2002) CrossRefADSGoogle Scholar
  5. 5.
    J.M. Cline, H. Firouzjahi, P. Martineau, J. High Energy Phys. 11, 041 (2002) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    M. Fairbairn, M.H.G. Tytgat, Phys. Lett. B 546, 1 (2002) zbMATHCrossRefADSGoogle Scholar
  7. 7.
    B. Wang, E. Abdalla, R.K. Su, Mod. Phys. Lett. A 18, 31 (2003) zbMATHCrossRefADSGoogle Scholar
  8. 8.
    L. Kofman, A. Linde, J. High Energy Phys. 07, 004 (2002) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    G.W. Gibbons, Phys. Lett. B 537, 1 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    M. Sami, Mod. Phys. Lett. A 18, 691 (2003) CrossRefADSGoogle Scholar
  11. 11.
    M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 67, 063511 (2003) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Y.S. Piao, Q.G. Huang, X.M. Zhang, Y.Z. Zhang, Phys. Lett. B 570, 1 (2003) zbMATHCrossRefADSGoogle Scholar
  13. 13.
    Z.K. Guo, Y.S. Piao, R.G. Cai, Y.Z. Zhang, Phys. Rev. D 68, 043508 (2003) CrossRefADSGoogle Scholar
  14. 14.
    S. Nojiri, S.D. Odintsov, Phys. Lett. B 571, 1 (2003) zbMATHCrossRefADSGoogle Scholar
  15. 15.
    G.W. Gibbons, Class. Quantum Gravity 20, S321 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    D.A. Steer, F. Vernizzi, Phys. Rev. D 70, 043527 (2004) CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    V. Gorini, A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Rev. D 69, 123512 (2004) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    B.C. Paul, M. Sami, Phys. Rev. D 70, 027301 (2004) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    J.M. Aguirregabiria, R. Lazkoz, Mod. Phys. Lett. A 19, 927 (2004) zbMATHCrossRefADSGoogle Scholar
  20. 20.
    T. Padmanabhan, Phys. Rev. D 66, 021301 (2002) CrossRefADSGoogle Scholar
  21. 21.
    A. Feinstein, Phys. Rev. D 66, 063511 (2002) CrossRefADSGoogle Scholar
  22. 22.
    D. Choudhury, D. Ghoshal, D.P. Jatkar, S. Panda, Phys. Lett. B 544, 231 (2002) zbMATHCrossRefADSGoogle Scholar
  23. 23.
    X.Z. Li, J.G. Hao, D.J. Liu, Chin. Phys. Lett. 19, 1584 (2002) CrossRefADSGoogle Scholar
  24. 24.
    J.G. Hao, X.Z. Li, Phys. Rev. D 66, 087301 (2002) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    L.R. Abramo, F. Finelli, Phys. Lett. B 575, 165 (2003) zbMATHCrossRefADSGoogle Scholar
  26. 26.
    J.S. Bagla, H.K. Jassal, T. Padmanabhan, Phys. Rev. D 67, 063504 (2003) CrossRefADSGoogle Scholar
  27. 27.
    M.R. Garousi, M. Sami, S. Tsujikawa, Phys. Rev. D 70, 043536 (2004) CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    J.M. Aguirregabiria, R. Lazkoz, Phys. Rev. D 69, 123502 (2004) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    E.J. Copeland, M.R. Garousi, M. Sami, S. Tsujikawa, Phys. Rev. D 71, 043003 (2005) CrossRefADSGoogle Scholar
  30. 30.
    G. Calcagni, A.R. Liddle, Phys. Rev. D 74, 043528 (2006) CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    V.H. Cardenas, Phys. Rev. D 73, 103512 (2006) CrossRefADSGoogle Scholar
  32. 32.
    A. de la Macorra, U. Filobello, Phys. Rev. D 77, 023531 (2008) CrossRefADSGoogle Scholar
  33. 33.
    J.G. Hao, X.Z. Li, Phys. Rev. D 68, 043501 (2003) CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    S. Tsujikawa, M. Sami, Phys. Lett. B 603, 113 (2004) CrossRefADSGoogle Scholar
  35. 35.
    S.G. Shi, Y.S. Piao, C.F. Qiao, J. Cosmol. Astropart. Phys. 04, 027 (2009) CrossRefADSGoogle Scholar
  36. 36.
    E.J. Copeland, A.R. Liddle, D. Wands, Phys. Rev. D 57, 4686 (1998) CrossRefADSGoogle Scholar
  37. 37.
    I.P.C. Heard, D. Wands, Class. Quantum Gravity 19, 5435 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    W. Fang, Y. Li, K. Zhang, H.Q. Lu, Class. Quantum Gravity 26, 155005 (2009) CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    H.K. Khalil, Nonlinear Systems, 2nd edn. (Prentice Hall, Englewood Cliffs, 1996), pp. 167–177 Google Scholar
  40. 40.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  41. 41.
    I. Quiros et al., arXiv:0906.2617
  42. 42.
    Y.G. Gong, A.Z. Wang, Y.Z. Zhang, Phys. Lett. B 636, 286 (2006) MathSciNetADSGoogle Scholar
  43. 43.
    Y. Leyva, D. Gonzalez, T. Gonzalez, T. Matos, I. Quiros, Phys. Rev. D 80, 044026 (2009) CrossRefADSGoogle Scholar
  44. 44.
    T. Matos, J.R. Luevano, I. Quiros, L.A. Urena-Lopez, J.A. Vazquez, Phys. Rev. D 80, 123521 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Normal UniversityShanghaiP.R. China
  2. 2.The Shanghai Key Lab for AstrophysicsShanghaiP.R. China
  3. 3.Department of PhysicsShanghai UniversityShanghaiP.R. China

Personalised recommendations