Charged-particle multiplicity measurement in proton–proton collisions at \(\sqrt{s}=7\) TeV with ALICE at LHC

Abstract

The pseudorapidity density and multiplicity distribution of charged particles produced in proton–proton collisions at the LHC, at a centre-of-mass energy \(\sqrt{s}=7\) TeV, were measured in the central pseudorapidity region |η|<1. Comparisons are made with previous measurements at \(\sqrt{s}=0.9\) TeV and 2.36 TeV. At \(\sqrt{s}=7\) TeV, for events with at least one charged particle in |η|<1, we obtain \(\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta=6.01\pm0.01(\mathrm {stat.})^{+0.20}_{-0.12}(\mathrm{syst.})\). This corresponds to an increase of \(57.6\%\pm0.4\%(\mathrm{stat.})^{+3.6}_{-1.8}\%(\mathrm{syst.})\) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.

References

  1. 1.

    K. Aamodt et al. (ALICE Collaboration), J. Instrum. 3, S08002 (2008)

    Article  Google Scholar 

  2. 2.

    L. Evans, P. Bryant (eds.), J. Instrum. 3, S08001 (2008)

    Article  Google Scholar 

  3. 3.

    K. Aamodt et al. (ALICE Collaboration), Eur. Phys. J. C 65, 111 (2010)

    Article  ADS  Google Scholar 

  4. 4.

    K. Aamodt et al. (ALICE Collaboration), submitted to Eur. Phys. J. C. arXiv:1004.3034 [hep-ex] (2010)

  5. 5.

    T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  6. 6.

    T. Sjöstrand, S. Mrenna, P. Skands, J. High Energy Phys. 2006, 05026 (2006)

    Article  Google Scholar 

  7. 7.

    M.G. Albrow et al. (Tev4LHC QCD Working Group). arXiv:hep-ph/0610012 (2006)

  8. 8.

    A. Moraes (ATLAS Collaboration), ATLAS Note ATL-COM-PHYS-2009-119 (2009), ATLAS CSC (306) tune

  9. 9.

    P.Z. Skands, in Multi-Parton Interaction Workshop, Perugia, Italy, 28–31 Oct. 2008, arXiv:0905.3418 [hep-ph] (2009)

  10. 10.

    R. Engel, J. Ranft, S. Roesler, Phys. Rev. D 52, 1459 (1995)

    ADS  Google Scholar 

  11. 11.

    J.F. Grosse-Oetringhaus, K. Reygers, to be published in J. Phys. G, arXiv:0912.0023 [hep-ex] (2009)

  12. 12.

    V. Blobel, in 8th CERN School of Comp., CSC’84, Aiguablava, Spain, 9–22 Sep. 1984, CERN-85-09, 88 (1985)

  13. 13.

    J.F. Grosse-Oetringhaus, PhD thesis, University of Münster, Germany, CERN-THESIS-2009-033 (2009)

  14. 14.

    G. D’Agostini, Nucl. Instrum. Methods A 362, 487 (1995)

    Article  ADS  Google Scholar 

  15. 15.

    G. D’Agostini, CERN Report CERN-99-03 (1999)

  16. 16.

    V. Khachatryan et al. (CMS Collaboration), J. High Energy Phys. 2010, 02041 (2010)

    Article  Google Scholar 

  17. 17.

    G.J. Alner et al. (UA5 Collaboration), Z. Phys. C 33, 1 (1986)

    ADS  Google Scholar 

  18. 18.

    W. Thome et al., Nucl. Phys. B 129, 365 (1977)

    Article  ADS  Google Scholar 

  19. 19.

    K. Alpgård et al. (UA5 Collaboration), Phys. Lett. B 112, 183 (1982)

    ADS  Google Scholar 

  20. 20.

    M. Ambrosio et al., AIP Conf. Proc. 85, 602 (1982)

    Article  ADS  Google Scholar 

  21. 21.

    R. Noucier et al. (PHOBOS Collaboration), J. Phys. G 30, S1133 (2004)

    ADS  Google Scholar 

  22. 22.

    B.I. Abelev et al. (STAR Collaboration), Phys. Rev. C 79, 034909 (2009)

    Article  ADS  Google Scholar 

  23. 23.

    G.J. Alner et al. (UA5 Collaboration), Phys. Rep. 154, 247 (1987)

    Article  ADS  Google Scholar 

  24. 24.

    C. Albajar et al. (UA1 Collaboration), Nucl. Phys. B 335, 261 (1990)

    Article  ADS  Google Scholar 

  25. 25.

    F. Abe et al. (CDF Collaboration), Phys. Rev. D 41, 2330 (1990)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors