Advertisement

The European Physical Journal C

, Volume 69, Issue 1–2, pp 271–279 | Cite as

Gravitational collapse of spherically symmetric stars in noncommutative general relativity

  • Wen Sun
  • Ding Wang
  • Naqing Xie
  • R. B. ZhangEmail author
  • Xiao Zhang
Regular Article - Theoretical Physics

Abstract

Gravitational collapse of a class of spherically symmetric stars is investigated. We quantise the geometries describing the gravitational collapse by a deformation quantisation procedure. This gives rise to noncommutative spacetimes with gravitational collapse.

Keywords

Black Hole Energy Density Neutron Star Scalar Curvature High Energy Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Adler, M. Bazin, M. Schiffer, Introduction to General Relativity, 2nd edn. (McGraw–Hill, New York, 1975) Google Scholar
  2. 2.
    S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, London, 1973) zbMATHCrossRefGoogle Scholar
  3. 3.
    D. Kramer, H. Stephani, E. Herlt, M. MacCallum, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, London, 1980) zbMATHGoogle Scholar
  4. 4.
    J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960) zbMATHGoogle Scholar
  5. 5.
    R. Wald, General Relativity (University of Chicago Press, Chicago, 1984) zbMATHGoogle Scholar
  6. 6.
    S. Chandrasekhar, The highly collapsed configurations of a stellar mass. Mon. Not. R. Astron. Soc. 91, 456–466 (1931) zbMATHADSGoogle Scholar
  7. 7.
    S. Chandrasekhar, The highly collapsed configurations of a stellar mass (second paper). Mon. Not. R. Astron. Soc. 95, 207–225 (1935) zbMATHADSGoogle Scholar
  8. 8.
    J.R. Oppenheimer, H. Snyder, On continued gravitational contraction. Phys. Rev. 56, 455–459 (1939) zbMATHCrossRefADSGoogle Scholar
  9. 9.
    R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939) zbMATHCrossRefADSGoogle Scholar
  10. 10.
    J.R. Oppenheimer, G. Volkoff, On massive neutron cores. Phys. Rev. 55, 374–381 (1939) zbMATHCrossRefADSGoogle Scholar
  11. 11.
    M. Chaichian, A. Tureanu, R.B. Zhang, X. Zhang, Riemannian geometry of noncommutative surfaces. J. Math. Phys. 49, 073511 (2008) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    D. Wang, R.B. Zhang, X. Zhang, Quantum deformations of Schwarzschild and Schwarzschild–de Sitter spacetimes. Class. Quantum Gravity 26, 085014 (2009), 14 pp. CrossRefADSGoogle Scholar
  13. 13.
    D. Wang, R.B. Zhang, X. Zhang, Exact solutions of noncommutative vacuum Einstein field equations and plane-fronted gravitational waves. Eur. Phys. J. C 64, 439–444 (2009) zbMATHCrossRefADSGoogle Scholar
  14. 14.
    A.H. Chamseddine, Commun. Math. Phys. 218, 283 (2001) zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    A.H. Chamseddine, Phys. Rev. D 69, 024015 (2004) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, J. Wess, Class. Quantum Gravity 22, 3511 (2005) zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, Class. Quantum Gravity 23, 1883 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    M. Buric, T. Grammatikopoulos, J. Madore, G. Zoupanos, J. High Energy Phys. 0604, 054 (2006) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    M. Burić, J. Madore, Eur. Phys. J. C 58, 347–353 (2008) zbMATHCrossRefADSGoogle Scholar
  20. 20.
    S. Marculescu, F. Ruiz Ruiz, Seiberg-Witten maps for SO(1,3) gauge invariance and deformations of gravity. Phys. Rev. D 79, 025004 (2009) CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    S. Marculescu, F. Ruiz Ruiz, Noncommutative Einstein–Maxwell pp-waves. Phys. Rev. D 74, 105004 (2006) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    L. Álvarez-Gaumé, F. Meyer, M.A. Vazquez-Mozo, Nucl. Phys. B 75, 392 (2006) Google Scholar
  23. 23.
    M. Chaichian, A. Tureanu, G. Zet, Phys. Lett. B 660, 573 (2008) CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    M. Chaichian, M.R. Setare, A. Tureanu, G. Zet, J. High Energy Phys. 0804, 064 (2008) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    B.P. Dolan, K.S. Gupta, A. Stern, Class. Quantum Gravity 24, 1647 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    H.C. Kim, M.I. Park, C. Rim, J.H. Yee, J. High Energy Phys. 10, 060 (2008) CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    S. Ansoldi, P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 645, 261 (2007) CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 632, 547 (2006) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    A. Kobakhidze, Phys. Rev. D 79, 047701 (2009) CrossRefADSGoogle Scholar
  30. 30.
    M. Chaichian, A. Demicheva, P. Presnajder, A. Tureanua, Noncommutative quantum field theory: unitarity and discrete time. Phys. Lett. B 515, 426–430 (2001) zbMATHCrossRefADSGoogle Scholar
  31. 31.
    J. Gomis, T. Mehen, Nuclear Phys. B 591(12), 265–276 (2000) zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    N. Seiberg, L. Susskind, N. Toumbas, J. High Energy Phys. 0006, 044 (2000) CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    M.P. do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Englewood Cliffs, 1976), viii+503 pp. zbMATHGoogle Scholar
  34. 34.
    C.W. Misner, H.S. Zapolsky, High-density behavior and dynamical stability of neutron star models. Phys. Rev. Lett. 12, 635–637 (1964) CrossRefADSGoogle Scholar
  35. 35.
    C.H. Gu, Gravitational collapse of spherical symmetry with non-uniform density. Front. Math. China 2, 161–168 (2006). Translated from J. Fudan Univ. (Nat. Sci.) 1, 73–78 (1973) Google Scholar
  36. 36.
    H.S. Hu, Exact solutions of the spherically symmetric gravitational field equations. Front. Math. China 2, 169–177 (2006). Translated from J. Fudan Univ. (Nat. Sci.) 1, 92–98 (1974) CrossRefGoogle Scholar
  37. 37.
    M.Q. Zhong, Inquiry about the exact interior solution to Einstein field equation for a perfect fluid sphere. Acta Phys. Sin. 52, 1585–1588 (2003) Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • Wen Sun
    • 1
  • Ding Wang
    • 2
  • Naqing Xie
    • 3
  • R. B. Zhang
    • 4
    Email author
  • Xiao Zhang
    • 2
  1. 1.Lianyungang Teachers CollegeJiangsuChina
  2. 2.Institute of Mathematics, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  3. 3.Institute of Mathematics, School of Mathematical SciencesFudan UniversityShanghaiChina
  4. 4.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia

Personalised recommendations