Advertisement

The European Physical Journal C

, Volume 69, Issue 1–2, pp 31–43 | Cite as

Pseudoscalar Higgs bosons at the LHC: production and decays into electroweak gauge bosons revisited

  • Werner BernreutherEmail author
  • Patrick González
  • Martin Wiebusch
Regular Article - Theoretical Physics

Abstract

We analyse and compute, within a number of standard model (SM) extensions, the cross sections σ AVV for the production of a heavy neutral pseudoscalar Higgs-boson/spin-zero resonance at the LHC and its subsequent decays into electroweak gauge bosons. For comparison we calculate also the corresponding cross sections for a heavy scalar. The SM extensions we consider include a type-II two-Higgs doublet model (2HDM), a 2HDM with four chiral fermion generations, the minimal supersymmetric extension of the SM (MSSM), and top-colour assisted technicolour models. Presently available phenomenological constraints on the parameters of these models are taken into account. We find that, with the exception of the MSSM, these models permit the LHC cross sections σ AVV to be of observable size. That is, a pseudoscalar resonance may be observable, if it exists, at the LHC in its decays into electroweak gauge bosons, in particular in WW and γ γ final states.

Keywords

Higgs Boson Large Hadron Collider Gauge Boson Yukawa Coupling Production Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Djouadi, Phys. Rep. 457, 1–216 (2008). arXiv:hep-ph/0503172 CrossRefADSGoogle Scholar
  2. 2.
    G. Cvetic, Rev. Mod. Phys. 71, 513–574 (1999). arXiv:hep-ph/9702381 CrossRefADSGoogle Scholar
  3. 3.
    C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235–402 (2003). arXiv:hep-ph/0203079 CrossRefADSGoogle Scholar
  4. 4.
    A. Djouadi, Phys. Rep. 459, 1–241 (2008). arXiv:hep-ph/0503173 CrossRefADSGoogle Scholar
  5. 5.
    E. Accomando et al., arXiv:hep-ph/0608079
  6. 6.
    D.E. Morrissey, T. Plehn, T.M.P. Tait, arXiv:0912.3259 [hep-ph]
  7. 7.
    A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, J. High Energy Phys. 02, 080 (2007). arXiv:hep-ph/0611234 CrossRefADSGoogle Scholar
  8. 8.
    T. Aaltonen, et al. (CDF and D0 Collaboration), Phys. Rev. Lett. 104, 061804 (2010) CrossRefADSGoogle Scholar
  9. 9.
    S. Asai et al., Eur. Phys. J. C 32S2, 19–54 (2004). arXiv:hep-ph/0402254 CrossRefGoogle Scholar
  10. 10.
    S. Asai et al., Eur. Phys. J. C 39S2, 41–61 (2005) Google Scholar
  11. 11.
    A. Mendez, A. Pomarol, Phys. Lett. B 272, 313–318 (1991) CrossRefADSGoogle Scholar
  12. 12.
    J.F. Gunion, H.E. Haber, C. Kao, Phys. Rev. D 46, 2907–2917 (1992) CrossRefADSGoogle Scholar
  13. 13.
    C.A. Nelson, Phys. Rev. D 37, 1220 (1988) CrossRefADSGoogle Scholar
  14. 14.
    A. Soni, R.M. Xu, Phys. Rev. D 48, 5259–5263 (1993). arXiv:hep-ph/9301225 CrossRefADSGoogle Scholar
  15. 15.
    A. Skjold, P. Osland, Phys. Lett. B 311, 261–265 (1993). arXiv:hep-ph/9303294 CrossRefADSGoogle Scholar
  16. 16.
    V.D. Barger, K.-M. Cheung, A. Djouadi, B.A. Kniehl, P.M. Zerwas, Phys. Rev. D 49, 79–90 (1994). arXiv:hep-ph/9306270 CrossRefADSGoogle Scholar
  17. 17.
    T. Arens, L.M. Sehgal, Z. Phys. C 66, 89–94 (1995). arXiv:hep-ph/9409396 CrossRefADSGoogle Scholar
  18. 18.
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner, P.M. Zerwas, Phys. Lett. B 553, 61–71 (2003). arXiv:hep-ph/0210077 CrossRefADSGoogle Scholar
  19. 19.
    C.P. Buszello, I. Fleck, P. Marquard, J.J. van der Bij, Eur. Phys. J. C 32, 209–219 (2004). arXiv:hep-ph/0212396 CrossRefADSGoogle Scholar
  20. 20.
    R.M. Godbole, D.J. Miller, M.M. Muhlleitner, J. High Energy Phys. 12, 031 (2007). arXiv:0708.0458 [hep-ph] CrossRefADSGoogle Scholar
  21. 21.
    Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, N.V. Tran, Phys. Rev. D 81, 075022 (2010). arXiv:1001.3396 [hep-ph] CrossRefADSGoogle Scholar
  22. 22.
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan, M. Spiropulu, arXiv:1001.5300 [hep-ph]
  23. 23.
    A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331 CrossRefADSGoogle Scholar
  24. 24.
    T. Hahn, S. Heinemeyer, F. Maltoni, G. Weiglein, S. Willenbrock, arXiv:hep-ph/0607308
  25. 25.
    R.M. Barnett, H.E. Haber, D.E. Soper, Nucl. Phys. B 306, 697 (1988) CrossRefADSGoogle Scholar
  26. 26.
    D.A. Dicus, S. Willenbrock, Phys. Rev. D 39, 751 (1989) CrossRefADSGoogle Scholar
  27. 27.
    S. Dittmaier, M. Kramer, M. Spira, Phys. Rev. D 70, 074010 (2004). arXiv:hep-ph/0309204 CrossRefADSGoogle Scholar
  28. 28.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320 CrossRefADSzbMATHGoogle Scholar
  29. 29.
    R. Harlander, J. Phys. G 35, 033001 (2008) CrossRefADSGoogle Scholar
  30. 30.
    S. Catani, D. de Florian, M. Grazzini, P. Nason, J. High Energy Phys. 07, 028 (2003). arXiv:hep-ph/0306211. The tables interpolated by FeynHiggs were taken from F. Maltoni, http://maltoni.home.cern.ch/maltoni/TeV4LHC/index.html CrossRefADSGoogle Scholar
  31. 31.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169 [hep-ph] CrossRefADSGoogle Scholar
  32. 32.
    M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964–967 (1990) CrossRefADSGoogle Scholar
  33. 33.
    G. Altarelli, R. Barbieri, Phys. Lett. B 253, 161–167 (1991) CrossRefADSGoogle Scholar
  34. 34.
    O. Brein, Comput. Phys. Commun. 170, 42–48 (2005). arXiv:hep-ph/0407340 CrossRefADSGoogle Scholar
  35. 35.
    T. Hahn, Comput. Phys. Commun. 140, 418–431 (2001). arXiv:hep-ph/0012260 CrossRefADSzbMATHGoogle Scholar
  36. 36.
    T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54–68 (2002). arXiv:hep-ph/0105349 CrossRefADSzbMATHGoogle Scholar
  37. 37.
    T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153–165 (1999). arXiv:hep-ph/9807565 CrossRefADSGoogle Scholar
  38. 38.
    T. Hahn, M. Rauch, Nucl. Phys. Proc. Suppl. 157, 236–240 (2006). arXiv:hep-ph/0601248 CrossRefADSGoogle Scholar
  39. 39.
    J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, The Higgs Hunter’s Guide (Perseus Publishing, Cambridge, 2000) Google Scholar
  40. 40.
    J.F. Gunion, H.E. Haber, Phys. Rev. D 67, 075019 (2003). arXiv:hep-ph/0207010 CrossRefADSGoogle Scholar
  41. 41.
    A.K. Grant, Phys. Rev. D 51, 207–217 (1995). arXiv:hep-ph/9410267 CrossRefADSGoogle Scholar
  42. 42.
    H.E. Haber, H.E. Logan, Phys. Rev. D 62, 015011 (2000). arXiv:hep-ph/9909335 CrossRefADSGoogle Scholar
  43. 43.
    K. Cheung, O.C.W. Kong, Phys. Rev. D 68, 053003 (2003). arXiv:hep-ph/0302111 CrossRefADSGoogle Scholar
  44. 44.
    W. Grimus, L. Lavoura, O.M. Ogreid, P. Osland, J. Phys. G 35, 075001 (2008). arXiv:0711.4022 [hep-ph] CrossRefADSGoogle Scholar
  45. 45.
    A. Wahab El Kaffas, P. Osland, O.M. Ogreid, Phys. Rev. D 76, 095001 (2007). arXiv:0706.2997 [hep-ph] CrossRefADSGoogle Scholar
  46. 46.
    S. Kanemura, T. Kubota, E. Takasugi, Phys. Lett. B 313, 155–160 (1993). arXiv:hep-ph/9303263 CrossRefADSGoogle Scholar
  47. 47.
    A.G. Akeroyd, A. Arhrib, E.-M. Naimi, Phys. Lett. B 490, 119–124 (2000). arXiv:hep-ph/0006035 CrossRefADSGoogle Scholar
  48. 48.
    I.F. Ginzburg, I.P. Ivanov, Phys. Rev. D 72, 115010 (2005). arXiv:hep-ph/0508020 CrossRefADSGoogle Scholar
  49. 49.
    S. Nie, M. Sher, Phys. Lett. B 449, 89–92 (1999). arXiv:hep-ph/9811234 CrossRefADSGoogle Scholar
  50. 50.
    S. Kanemura, T. Kasai, Y. Okada, Phys. Lett. B 471, 182–190 (1999). arXiv:hep-ph/9903289 CrossRefADSGoogle Scholar
  51. 51.
    C. Amsler et al., Phys. Lett. B 667, 1 (2008) CrossRefADSGoogle Scholar
  52. 52.
    C.D. Froggatt, R.G. Moorhouse, I.G. Knowles, Phys. Rev. D 45, 2471–2481 (1992) CrossRefADSGoogle Scholar
  53. 53.
    W. Grimus, L. Lavoura, O.M. Ogreid, P. Osland, Nucl. Phys. B 801, 81–96 (2008). arXiv:0802.4353 [hep-ph] CrossRefADSGoogle Scholar
  54. 54.
    D. Eriksson, J. Rathsman, O. Stal, Comput. Phys. Commun. 181, 189–205 (2010). arXiv:0902.0851 [hep-ph] CrossRefADSGoogle Scholar
  55. 55.
    J. Erler, arXiv:1002.1320 [hep-ph]
  56. 56.
    J. Erler, P. Langacker, arXiv:1003.3211 [hep-ph]
  57. 57.
    M. Maniatis, A. von Manteuffel, O. Nachtmann, Eur. Phys. J. C 57, 739–762 (2008). arXiv:0711.3760 [hep-ph] CrossRefADSGoogle Scholar
  58. 58.
    M. Maniatis, O. Nachtmann, J. High Energy Phys. 05, 028 (2009). arXiv:0901.4341 [hep-ph] CrossRefADSGoogle Scholar
  59. 59.
    G.D. Kribs, T. Plehn, M. Spannowsky, T.M.P. Tait, Phys. Rev. D 76, 075016 (2007). arXiv:0706.3718 [hep-ph] CrossRefADSGoogle Scholar
  60. 60.
    B. Holdom et al., PMC Phys. A 3, 4 (2009). arXiv:0904.4698 [hep-ph] CrossRefADSGoogle Scholar
  61. 61.
    M. Hashimoto, arXiv:1001.4335 [hep-ph]
  62. 62.
    J. Alwall et al., Eur. Phys. J. C 49, 791–801 (2007). arXiv:hep-ph/0607115 CrossRefADSGoogle Scholar
  63. 63.
    M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild, Phys. Rev. D 79, 113006 (2009). arXiv:0902.4883 [hep-ph] CrossRefADSGoogle Scholar
  64. 64.
    D. Cox (CDF Collaboration), arXiv:0910.3279 [hep-ex]
  65. 65.
    T. Aaltonen, et al. (CDF Collaboration), arXiv:0912.1057 [hep-ex]
  66. 66.
    S. Berge, W. Bernreuther, J. Ziethe, Phys. Rev. Lett. 100, 171605 (2008). arXiv:0801.2297 [hep-ph] CrossRefADSGoogle Scholar
  67. 67.
    S. Berge, W. Bernreuther, Phys. Lett. B 671, 470–476 (2009). arXiv:0812.1910 [hep-ph] CrossRefADSGoogle Scholar
  68. 68.
    Conference note 5757 (D0 Collaboration), http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/HIGGS/H61/
  69. 69.
    P.H. Frampton, P.Q. Hung, M. Sher, Phys. Rep. 330, 263 (2000). arXiv:hep-ph/9903387 CrossRefADSGoogle Scholar
  70. 70.
    F. del Aguila, M. Perez-Victoria, J. Santiago, J. High Energy Phys. 09, 011 (2000). arXiv:hep-ph/0007316 CrossRefGoogle Scholar
  71. 71.
    F. del Aguila, M. Perez-Victoria, J. Santiago, Phys. Lett. B 492, 98–106 (2000). arXiv:hep-ph/0007160 CrossRefADSGoogle Scholar
  72. 72.
    J.A. Aguilar-Saavedra, J. High Energy Phys. 11, 030 (2009). arXiv:0907.3155 [hep-ph] CrossRefADSGoogle Scholar
  73. 73.
    T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001). arXiv:hep-ph/0012100 CrossRefADSGoogle Scholar
  74. 74.
    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, J. High Energy Phys. 07, 034 (2002). arXiv:hep-ph/0206021 CrossRefMathSciNetADSGoogle Scholar
  75. 75.
    W. Bernreuther, P. Gonzalez, M. Wiebusch, arXiv:0909.3772 [hep-ph]
  76. 76.
    H.K. Dreiner et al., Eur. Phys. J. C 62, 547–572 (2009). arXiv:0901.3485 [hep-ph] CrossRefADSGoogle Scholar
  77. 77.
    M. Frank et al., J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326 CrossRefADSGoogle Scholar
  78. 78.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020 CrossRefADSGoogle Scholar
  79. 79.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343–366 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  80. 80.
    C.F. Berger, J.S. Gainer, J.L. Hewett, T.G. Rizzo, J. High Energy Phys. 02, 023 (2009). arXiv:0812.0980 [hep-ph] CrossRefMathSciNetADSGoogle Scholar
  81. 81.
    C.T. Hill, Phys. Lett. B 345, 483–489 (1995). arXiv:hep-ph/9411426 CrossRefADSGoogle Scholar
  82. 82.
    R.S. Chivukula, B.A. Dobrescu, H. Georgi, C.T. Hill, Phys. Rev. D 59, 075003 (1999). arXiv:hep-ph/9809470 CrossRefADSGoogle Scholar
  83. 83.
    G. Buchalla, G. Burdman, C.T. Hill, D. Kominis, Phys. Rev. D 53, 5185–5200 (1996). arXiv:hep-ph/9510376 CrossRefADSGoogle Scholar
  84. 84.
    A.K. Leibovich, D.L. Rainwater, Phys. Rev. D 65, 055012 (2002). arXiv:hep-ph/0110218 CrossRefADSGoogle Scholar
  85. 85.
    G. Burdman, D. Kominis, Phys. Lett. B 403, 101–107 (1997). arXiv:hep-ph/9702265 CrossRefADSGoogle Scholar
  86. 86.
    C.-X. Yue, Y.-P. Kuang, X.-L. Wang, W.-B. Li, Phys. Rev. D 62, 055005 (2000). arXiv:hep-ph/0001133 CrossRefADSGoogle Scholar
  87. 87.
    B. Balaji, Phys. Rev. D 53, 1699–1702 (1996). arXiv:hep-ph/9505313 CrossRefADSGoogle Scholar
  88. 88.
    G.-H. Wu, Phys. Rev. Lett. 74, 4137–4140 (1995). arXiv:hep-ph/9412206 CrossRefADSGoogle Scholar
  89. 89.
    A. Belyaev, A. Blum, R.S. Chivukula, E.H. Simmons, Phys. Rev. D 72, 055022 (2005). arXiv:hep-ph/0506086 CrossRefADSGoogle Scholar
  90. 90.
    G. Burdman, Phys. Rev. Lett. 83, 2888–2891 (1999). arXiv:hep-ph/9905347 CrossRefADSGoogle Scholar
  91. 91.
    M. Hashimoto, Phys. Rev. D 66, 095015 (2002). arXiv:hep-ph/0201110 CrossRefADSGoogle Scholar
  92. 92.
    J.-J. Cao, Z.-H. Xiong, J.M. Yang, Phys. Rev. D 67, 071701 (2003). arXiv:hep-ph/0212114 CrossRefADSGoogle Scholar
  93. 93.
    S. Dimopoulos, S. Raby, G.L. Kane, Nucl. Phys. B 182, 77 (1981) CrossRefADSGoogle Scholar
  94. 94.
    J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, P. Sikivie, Nucl. Phys. B 182, 529–545 (1981) CrossRefADSGoogle Scholar
  95. 95.
    R.S. Chivukula, R. Rosenfeld, E.H. Simmons, J. Terning, arXiv:hep-ph/9503202

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • Werner Bernreuther
    • 1
    Email author
  • Patrick González
    • 1
  • Martin Wiebusch
    • 1
  1. 1.Institut für Theoretische PhysikRWTH Aachen UniversityAachenGermany

Personalised recommendations