The European Physical Journal C

, Volume 67, Issue 3–4, pp 617–636 | Cite as

Charged Higgs boson production in association with a top quark in MC@NLO

  • C. Weydert
  • S. Frixione
  • M. Herquet
  • M. Klasen
  • E. Laenen
  • T. Plehn
  • G. Stavenga
  • C. D. White
Special Article - Tools for Experiment and Theory

Abstract

We discuss the calculation of charged Higgs boson production in association with a top quark in the MC@NLO framework for combining NLO matrix elements with a parton shower. The process is defined in a model-independent manner for wide applicability, and can be used if the charged Higgs boson mass is either greater or less than the mass of the top quark. For the latter mass region, care is needed in defining the charged Higgs production mode due to interference with top pair production. We give a suitable definition applicable in an NLO (plus parton shower) context, and we present example results for the LHC.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964) CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–322 (1964) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964) CrossRefADSGoogle Scholar
  5. 5.
    T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 155, 1554–1561 (1967) CrossRefADSGoogle Scholar
  6. 6.
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II: The Higgs bosons in the minimal supersymmetric model. Phys. Rept. 459, 1–241 (2008). arXiv:hep-ph/0503173 CrossRefADSGoogle Scholar
  7. 7.
    M. Misiak et al., The first estimate of BR(BX s γ) at \(O(\alpha_{s}^{2})\). Phys. Rev. Lett. 98, 022002 (2007). arXiv:hep-ph/0609232 CrossRefADSGoogle Scholar
  8. 8.
    S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 06, 029 (2002). arXiv:hep-ph/0204244 CrossRefADSGoogle Scholar
  9. 9.
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Single-top production in MC@NLO. J. High Energy Phys. 03, 092 (2006). arXiv:hep-ph/0512250 CrossRefADSGoogle Scholar
  10. 10.
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White, Single-top hadroproduction in association with a W boson. J. High Energy Phys. 07, 029 (2008). arXiv:0805.3067 CrossRefADSGoogle Scholar
  11. 11.
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations. J. High Energy Phys. 04, 081 (2007). arXiv:hep-ph/0702198 CrossRefADSGoogle Scholar
  12. 12.
    P. Motylinski, Angular correlations in t-channel single top production at the LHC. Phys. Rev. D 80, 074015 (2009). arXiv:0905.4754 CrossRefADSGoogle Scholar
  13. 13.
    S.-H. Zhu, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN Large Hadron Collider. Phys. Rev. D 67, 075006 (2003). arXiv:hep-ph/0112109 CrossRefADSGoogle Scholar
  14. 14.
    T. Plehn, Charged Higgs boson production in bottom gluon fusion. Phys. Rev. D 67, 014018 (2003). arXiv:hep-ph/0206121 CrossRefADSGoogle Scholar
  15. 15.
    S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions. arXiv:0907.4076
  16. 16.
    J. Alwall, J. Rathsman, Improved description of charged Higgs boson production at hadron colliders. J. High Energy Phys. 12, 050 (2004). arXiv:hep-ph/0409094 CrossRefADSGoogle Scholar
  17. 17.
    S. Catani, M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD. Nucl. Phys. B 485, 291–419 (1997). arXiv:hep-ph/9605323 CrossRefADSGoogle Scholar
  18. 18.
    S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, The dipole formalism for next-to-leading order QCD calculations with massive partons. Nucl. Phys. B 627, 189–265 (2002). arXiv:hep-ph/0201036 MATHCrossRefADSGoogle Scholar
  19. 19.
    S. Frixione, Z. Kunszt, A. Signer, Three-jet cross sections to next-to-leading order. Nucl. Phys. B 467, 399–442 (1996). arXiv:hep-ph/9512328 CrossRefADSGoogle Scholar
  20. 20.
    S. Frixione, A general approach to jet cross sections in QCD. Nucl. Phys. B 507, 295–314 (1997). arXiv:hep-ph/9706545 CrossRefADSGoogle Scholar
  21. 21.
    M.A.G. Aivazis, J.C. Collins, F.I. Olness, W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies. Phys. Rev. D 50, 3102–3118 (1994). arXiv:hep-ph/9312319 CrossRefADSGoogle Scholar
  22. 22.
    S. Dittmaier, M. Kramer, M. Spira, M. Walser, Charged–Higgs–boson production at the LHC: NLO supersymmetric QCD corrections. arXiv:0906.2648
  23. 23.
    E.L. Berger, T. Han, J. Jiang, T. Plehn, Associated production of a top quark and a charged Higgs boson. Phys. Rev. D 71, 115012 (2005). arXiv:hep-ph/0312286 CrossRefADSGoogle Scholar
  24. 24.
    J.C. Collins, F. Wilczek, A. Zee, Low-energy manifestations of heavy particles: application to the neutral current. Phys. Rev. D 18, 242 (1978) CrossRefADSGoogle Scholar
  25. 25.
    J.A.M. Vermaseren, New features of FORM, arXiv:math-ph/0010025
  26. 26.
    W. Beenakker, R. Hopker, M. Spira, PROSPINO: A program for the production of supersymmetric particles in next-to-leading order QCD. arXiv:hep-ph/9611232
  27. 27.
  28. 28.
    S. Frixione, P. Nason, B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production. J. High Energy Phys. 08, 007 (2003). arXiv:hep-ph/0305252 CrossRefADSGoogle Scholar
  29. 29.
    S. Frixione, S. Latunde-Dada, F. Stoeckli, P. Torrielli, B.R. Webber, In preparation Google Scholar
  30. 30.
    O. Latunde-Dada, MC@NLO for the hadronic decay of Higgs bosons in associated production with vector bosons. J. High Energy Phys. 05, 112 (2009). arXiv:0903.4135 CrossRefADSGoogle Scholar
  31. 31.
    A. Papaefstathiou, O. Latunde-Dada, NLO production of W′ bosons at hadron colliders using the MC@NLO and POWHEG methods. J. High Energy Phys. 07, 044 (2009). arXiv:0901.3685 CrossRefADSGoogle Scholar
  32. 32.
    O. Latunde-Dada, Herwig Monte Carlo at next-to-leading order for e + e annihilation and lepton pair production. J. High Energy Phys. 11, 040 (2007). arXiv:0708.4390 CrossRefADSGoogle Scholar
  33. 33.
    P. Torrielli, S. Frixione, In preparation Google Scholar
  34. 34.
    A.S. Belyaev, E.E. Boos, L.V. Dudko, Single top quark at future hadron colliders: Complete signal and background study. Phys. Rev. D 59, 075001 (1999). arXiv:hep-ph/9806332 CrossRefADSGoogle Scholar
  35. 35.
    T.M.P. Tait, The tW mode of single top production. Phys. Rev. D 61, 034001 (2000). arXiv:hep-ph/9909352 CrossRefADSGoogle Scholar
  36. 36.
    J.M. Campbell, F. Tramontano, Next-to-leading order corrections to Wt production and decay. Nucl. Phys. B 726, 109–130 (2005). arXiv:hep-ph/0506289 MATHCrossRefADSGoogle Scholar
  37. 37.
    S. Zhu, Next-to-leading order QCD corrections to bgtW-at the CERN large hadron collider. Phys. Lett. B 524, 283–288 (2002) CrossRefADSGoogle Scholar
  38. 38.
    C.D. White, S. Frixione, E. Laenen, F. Maltoni, Isolating Wt production at the LHC. J. High Energy Phys. 11, 074 (2009). arXiv:0908.0631 CrossRefADSGoogle Scholar
  39. 39.
    J. Alwall et al., MadGraph/MadEvent v4: the new Web generation. J. High Energy Phys. 09, 028 (2007). arXiv:0706.2334 CrossRefADSGoogle Scholar
  40. 40.
    F. Maltoni, T. Stelzer, MadEvent: Automatic event generation with MadGraph. J. High Energy Phys. 02, 027 (2003). arXiv:hep-ph/0208156 CrossRefADSGoogle Scholar
  41. 41.
    H.L. Lai et al. (CTEQ Collaboration), Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions. Eur. Phys. J. C 12, 375–392 (2000). arXiv:hep-ph/9903282 CrossRefADSGoogle Scholar
  42. 42.
    W.K. Tung et al., Heavy quark mass effects in deep inelastic scattering and global QCD analysis. J. High Energy Phys. 02, 053 (2007). arXiv:hep-ph/0611254 CrossRefADSGoogle Scholar
  43. 43.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009). arXiv:0901.0002 CrossRefADSGoogle Scholar
  44. 44.
    J.F. Gunion, Detecting the tb decays of a charged Higgs boson at a hadron supercollider. Phys. Lett. B 322, 125–130 (1994). arXiv:hep-ph/9312201 CrossRefADSGoogle Scholar
  45. 45.
    J.L. Diaz-Cruz, O.A. Sampayo, Contribution of gluon fusion to the production of charged Higgs at hadron colliders. Phys. Rev. D 50, 6820–6823 (1994) CrossRefADSGoogle Scholar
  46. 46.
    R.M. Barnett, H.E. Haber, D.E. Soper, Ultraheavy particle production from heavy partons at hadron colliders. Nucl. Phys. B 306, 697 (1988) CrossRefADSGoogle Scholar
  47. 47.
    A.C. Bawa, C.S. Kim, A.D. Martin, Charged Higgs production at hadron colliders. Z. Phys. C 47, 75–82 (1990) CrossRefGoogle Scholar
  48. 48.
    V.D. Barger, R.J.N. Phillips, D.P. Roy, Heavy charged Higgs signals at the LHC. Phys. Lett. B 324, 236–240 (1994). arXiv:hep-ph/9311372 CrossRefADSGoogle Scholar
  49. 49.
    T. Plehn, D. Rainwater, P. Skands, Squark and gluino production with jets. Phys. Lett. B 645, 217–221 (2007). arXiv:hep-ph/0510144 CrossRefADSGoogle Scholar
  50. 50.
    T. Plehn, T.M.P. Tait, Seeking Sgluons. J. Phys. G 36, 075001 (2009). arXiv:0810.3919 CrossRefADSGoogle Scholar
  51. 51.
    J. Alwall, S. de Visscher, F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC. J. High Energy Phys. 02, 017 (2009). arXiv:0810.5350 CrossRefADSGoogle Scholar
  52. 52.
    J.M. Butterworth, B.E. Cox, J.R. Forshaw, WW scattering at the CERN LHC. Phys. Rev. D 65, 096014 (2002). arXiv:hep-ph/0201098 CrossRefADSGoogle Scholar
  53. 53.
    J. Thaler, L.-T. Wang, Strategies to identify boosted tops. J. High Energy Phys. 07, 092 (2008). arXiv:0806.0023 CrossRefADSGoogle Scholar
  54. 54.
    D.E. Kaplan, K. Rehermann, M.D. Schwartz, B. Tweedie, Top tagging: A method for identifying boosted hadronically decaying top quarks. Phys. Rev. Lett. 101, 142001 (2008). arXiv:0806.0848 CrossRefADSGoogle Scholar
  55. 55.
    L.G. Almeida et al., Substructure of high-p T jets at the LHC. Phys. Rev. D 79, 074017 (2009). arXiv:0807.0234 CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    T. Plehn, G.P. Salam, M. Spannowsky, Fat jets for a light higgs. arXiv:0910.5472
  57. 57.
    M. Beccaria, G. Macorini, L. Panizzi, F.M. Renard, C. Verzegnassi, Associated production of charged Higgs and top at LHC: the role of the complete electroweak supersymmetric contribution. Phys. Rev. D 80, 053011 (2009). arXiv:0908.1332 CrossRefADSGoogle Scholar
  58. 58.
    J.M. Campbell, R.K. Ellis, F. Maltoni, S. Willenbrock, Higgs boson production in association with a single bottom quark. Phys. Rev. D 67, 095002 (2003). arXiv:hep-ph/0204093 CrossRefADSGoogle Scholar
  59. 59.
    M.L. Mangano, P. Nason, G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. B 373, 295–345 (1992) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • C. Weydert
    • 1
  • S. Frixione
    • 2
    • 3
  • M. Herquet
    • 4
  • M. Klasen
    • 1
  • E. Laenen
    • 4
    • 5
    • 6
  • T. Plehn
    • 7
  • G. Stavenga
    • 6
    • 8
  • C. D. White
    • 9
  1. 1.Laboratoire de Physique Subatomique et de CosmologieUJF, CNRS/IN2P3, INPGGrenoble cedexFrance
  2. 2.PH Department, TH unitCERNGeneva 23Switzerland
  3. 3.ITPPEPFLLausanneSwitzerland
  4. 4.Nikhef Theory GroupAmsterdamThe Netherlands
  5. 5.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  6. 6.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands
  7. 7.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  8. 8.Fermi National Accelerator LaboratoryBataviaUSA
  9. 9.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations