Advertisement

The European Physical Journal C

, Volume 67, Issue 1–2, pp 149–162 | Cite as

Radiative and semileptonic B decays involving higher K-resonances in the final states

  • Hisaki Hatanaka
  • Kwei-Chou YangEmail author
Regular Article - Theoretical Physics

Abstract

We study the radiative and semileptonic B decays involving a spin-J resonant \(K_{J}^{(*)}\) with parity (−1) J for \(K_{J}^{*}\) and (−1)J+1 for K J in the final state. Using large energy effective theory (LEET) techniques, we formulate \(B\to K_{J}^{(*)}\) transition form factors in the large recoil region in terms of two independent LEET functions \(\zeta_{\perp}^{K_{J}^{(*)}}\) and \(\zeta_{\parallel}^{K_{J}^{(*)}}\), the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, \(\zeta_{\perp,\parallel}^{K_{J}^{(*)}}\) exhibit a dipole dependence in q 2. We predict the decay rates for \(B\to K_{J}^{(*)}\gamma\), \(B\to K_{J}^{(*)}\ell^{+}\ell^{-}\) and \(B\to K_{J}^{(*)}\nu \bar{\nu}\). The branching fractions for these decays with higher K-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of \(\zeta^{K_{J}^{(*)}}_{\perp,\parallel}\). Furthermore, if the spin of \(K_{J}^{(*)}\) becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch–Gordan coefficients defined by the polarization tensors of the \(K_{J}^{(*)}\). We also calculate the forward–backward asymmetry of the \(B\to K_{J}^{(*)}\ell^{+}\ell^{-}\) decay, for which the zero is highly insensitive to the K-resonances in the LEET parametrization.

Keywords

Form Factor Invariant Mass Rest Frame Polarization Tensor Transition Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ishikawa et al. (Belle Collaboration), Phys. Rev. Lett. 96, 251801 (2006). arXiv:hep-ex/0603018 CrossRefADSGoogle Scholar
  2. 2.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73, 092001 (2006). arXiv:hep-ex/0604007 CrossRefADSGoogle Scholar
  3. 3.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 031102 (2009). arXiv:0804.4412 [hep-ex] CrossRefADSGoogle Scholar
  4. 4.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 102, 091803 (2009). arXiv:0807.4119 [hep-ex] CrossRefADSGoogle Scholar
  5. 5.
    I. Adachi et al. (Belle Collaboration), arXiv:0810.0335 [hep-ex]
  6. 6.
    J.T. Wei, P. Chang (Belle collaboration), arXiv:0904.0770 [hep-ex]
  7. 7.
    G. Eigen, arXiv:0807.4076 [hep-ex]
  8. 8.
    A. Ali, P. Ball, L.T. Handoko, G. Hiller, Phys. Rev. D 61, 074024 (2000). arXiv:hep-ph/9910221 CrossRefADSGoogle Scholar
  9. 9.
    T. Feldmann, J. Matias, J. High Energy Phys. 0301, 074 (2003). arXiv:hep-ph/0212158 CrossRefADSGoogle Scholar
  10. 10.
    J. Charles, A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 60, 014001 (1999). arXiv:hep-ph/9812358 CrossRefADSGoogle Scholar
  11. 11.
    H. Hatanaka, K.C. Yang, Phys. Rev. D 79, 114008 (2009). arXiv:0903.1917 [hep-ph] CrossRefADSGoogle Scholar
  12. 12.
    T.E. Coan et al. (CLEO Collaboration), Phys. Rev. Lett. 84, 5283 (2000). arXiv:hep-ex/9912057 CrossRefADSGoogle Scholar
  13. 13.
    M. Nakao et al. (BELLE Collaboration), Phys. Rev. D 69, 112001 (2004). arXiv:hep-ex/0402042 CrossRefADSGoogle Scholar
  14. 14.
    B. Aubert et al. (BABAR Collaboration), arXiv:0808.1915 [hep-ex]
  15. 15.
    B. Aubert (The BABAR Collaboration), arXiv:0906.2177 [hep-ex]
  16. 16.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 091105 (2004). arXiv:hep-ex/0409035 CrossRefADSGoogle Scholar
  17. 17.
    S. Nishida et al. (Belle Collaboration), Phys. Rev. Lett. 89, 231801 (2002). arXiv:hep-ex/0205025 CrossRefADSGoogle Scholar
  18. 18.
    S. Nishida et al. (Belle Collaboration), Phys. Lett. B 610, 23 (2005). arXiv:hep-ex/0411065 CrossRefADSGoogle Scholar
  19. 19.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 79, 011104 (2009). arXiv:0804.3908 [hep-ex] CrossRefADSGoogle Scholar
  20. 20.
    K.F. Chen et al. (BELLE Collaboration), Phys. Rev. Lett. 99, 221802 (2007). arXiv:0707.0138 [hep-ex] CrossRefADSGoogle Scholar
  21. 21.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 78, 072007 (2008). arXiv:0808.1338 [hep-ex] CrossRefADSGoogle Scholar
  22. 22.
    H. Yang et al., Phys. Rev. Lett. 94, 111802 (2005). arXiv:hep-ex/0412039 CrossRefADSGoogle Scholar
  23. 23.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72, 052004 (2005). arXiv:hep-ex/0508004 CrossRefADSGoogle Scholar
  24. 24.
    S. Chen et al. (CLEO Collaboration), Phys. Rev. Lett. 87, 251807 (2001). arXiv:hep-ex/0108032 CrossRefADSGoogle Scholar
  25. 25.
    K. Abe et al. (Belle Collaboration), AIP Conf. Proc. 1078, 342 (2009). arXiv:0804.1580 [hep-ex] Google Scholar
  26. 26.
    S. Glenn et al. (CLEO Collaboration), Phys. Rev. Lett. 80, 2289 (1998). arXiv:hep-ex/9710003 CrossRefADSGoogle Scholar
  27. 27.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 081802 (2004). arXiv:hep-ex/0404006 CrossRefADSGoogle Scholar
  28. 28.
    M. Iwasaki et al. (Belle Collaboration), Phys. Rev. D 72, 092005 (2005). arXiv:hep-ex/0503044 CrossRefADSGoogle Scholar
  29. 29.
    C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008) CrossRefADSGoogle Scholar
  30. 30.
    E. Barberio et al. (Heavy Flavor Averaging Group), arXiv:0808.1297 [hep-ex]
  31. 31.
    M. Wirbel, B. Stech, M. Bauer, Z. Phys. C 29, 637 (1985) ADSGoogle Scholar
  32. 32.
    A. Ali, T. Ohl, T. Mannel, Phys. Lett. B 298, 195 (1993). arXiv:hep-ph/9208207 CrossRefADSGoogle Scholar
  33. 33.
    D. Ebert, R.N. Faustov, V.O. Galkin, H. Toki, Phys. Rev. D 64, 054001 (2001). arXiv:hep-ph/0104264 CrossRefADSGoogle Scholar
  34. 34.
    H.Y. Cheng, C.K. Chua, Phys. Rev. D 69, 094007 (2004). arXiv:hep-ph/0401141 CrossRefADSGoogle Scholar
  35. 35.
    H. Hatanaka, K.C. Yang, Phys. Rev. D 77, 094023 (2008); [Erratum-ibid. D 78, 059902 (2008)]. arXiv:0804.3198 [hep-ph] CrossRefADSGoogle Scholar
  36. 36.
    N. Isgur, D. Scora, B. Grinstein, M.B. Wise, Phys. Rev. D 39, 799 (1989) CrossRefADSGoogle Scholar
  37. 37.
    H. Hatanaka, K.C. Yang, Phys. Rev. D 78, 074007 (2008). arXiv:0808.3731 [hep-ph] CrossRefADSGoogle Scholar
  38. 38.
    CKMfitter Group [http://ckmfitter.in2p3.fr], results as of summer in 2008
  39. 39.
    A. Ali, A.Y. Parkhomenko, Eur. Phys. J. C 23, 89 (2002). arXiv:hep-ph/0105302 CrossRefADSGoogle Scholar
  40. 40.
    V.L. Chernyak, A.R. Zhitnitsky, Phys. Rep. 112, 173 (1984) CrossRefADSGoogle Scholar
  41. 41.
    A.J. Buras, M. Munz, Phys. Rev. D 52, 186 (1995). arXiv:hep-ph/9501281 CrossRefADSGoogle Scholar
  42. 42.
    A. Ali, T. Mannel, T. Morozumi, Phys. Lett. B 273, 505 (1991) CrossRefADSGoogle Scholar
  43. 43.
    C.S. Lim, T. Morozumi, A.I. Sanda, Phys. Lett. B 218, 343 (1989) CrossRefADSGoogle Scholar
  44. 44.
    T. Inami, C.S. Lim, Prog. Theor. Phys. 65, 297 (1981); [Erratum-ibid. 65, 1772 (1981)] CrossRefADSGoogle Scholar
  45. 45.
    G. Buchalla, A.J. Buras, Nucl. Phys. B 400, 225 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Department of PhysicsChung-Yuan Christian UniversityChung-LiROC

Personalised recommendations