The European Physical Journal C

, Volume 67, Issue 1–2, pp 263–271 | Cite as

D3 instantons in Calabi–Yau orientifolds with(out) fluxes

  • Jaemo ParkEmail author
Regular Article - Theoretical Physics


We investigate the instanton effects due to D3 branes wrapping a four-cycle in a Calabi–Yau orientifold with D7 branes. We study the condition for the nonzero superpotentials from the D3 instantons. To this aim we work out the zero mode structures of D3 branes wrapping a four-cycle both in the presence of the fluxes and in the absence of the fluxes. In the presence of the fluxes, the condition for the nonzero superpotential could be different from that without the fluxes. We explicitly work out a simple example of the orientifold of KT 2/Z 2 with a suitable flux to show such behavior. The effects of the D3–D7 sectors are interesting and give further constraints for the nonzero superpotential. In a special configuration where D3 branes and D7 branes wrap the same four-cycle, multi-instanton calculus of D3 branes could be reduced to that of a suitable field theory. The structure of D5 instantons in Type I theory is briefly discussed.


Zero Mode High Energy Phys Heterotic String Fermion Zero Mode World Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kachru, R. Kallosh, A. Linde, S. Trivedi, De Ditter vacua in string theory. Phys. Rev. D 68, 046005 (2003). hep-th/0301240 CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    S. Giddings, S. Kachru, J. Polchinski, Hierarchies from fluxes in string compactifications. Phys. Rev. D 66, 106006 (2002). hep-th/0105097 CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    J. Harvey, G. Moore, Superpotentials and membrane instantons. hep-th/9907026
  4. 4.
    E. Witten, Worldsheet instanton corrections via D-instantons. hep-th/9907041
  5. 5.
    G. Moore, G. Peradze, N. Saulina, Instabilities in heterotic M theory induced by open membrane instantons. Nucl. Phys. B 607, 117 (2001). hep-th/0012104 zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    E. Lima, B. Ovrut, J. Park, R. Reinbacher, Nonperturbative superpotentials from membrane instantons in heterotic M theory. Nucl. Phys. B 614, 117 (2001). hep-th/0101049 zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    E. Lima, B. Ovrut, J. Park, Five-brane superpotentials in heterotic M theory. Nucl. Phys. B 626, 113 (2002). hep-th/0102046 zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    L. Gorlich, S. Kachru, P. Tripathy, S. Trivedi, Gaugino condensation and nonperturbative superpotentials in flux compactifications. J. High Energy Phys. 0412, 074 (2004). hep-th/0407130 MathSciNetADSGoogle Scholar
  9. 9.
    P. Berglund, P. Mayr, Nonperturbative superpotentials in F-theory and string duality. hep-th/0504058
  10. 10.
    N. Saulina, Topological constraints on stabilized flux vacua. Nucl. Phys. B 720, 203 (2005). hep-th/0503125 zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    P. Tripathy, S. Trivedi, D3 brane action and fermion zero modes in presence of background flux. J. High Energy Phys. 0506, 066 (2005). hep-th/0503072 CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    D. Marolf, L. Martucci, P. Silva, Actions and fermionic symmetries for D-branes in bosonic backgrounds. J. High Energy Phys. 0307, 019 (2003). hep-th/0306066 CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    D. Marolf, L. Martucci, P. Silva, Fermions, T duality and effective actions for D-branes in bosonic backgrounds. J. High Energy Phys. 0304, 051 (2003). hep-th/0303209 CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    R. Kallosh, A. Kashani-Poor, A. Tomasiello, Counting fermion zero modes on M5 with fluxes. J. High Energy Phys. 0506, 069 (2005). hep-th/0503138 CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    P. Aspinwall, R. Kallosh, Fixing all moduli for M-theory on KK3. J. High Energy Phys. 0510, 001 (2005). hep-th/0506014 CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    E. Bergshoeff, R. Kallosh, A. Kashani-Poor, D. Sorokin, A. Tomasiello, An index for the Dirac operator on D3 brane with background fluxes. J. High Energy Phys. 0510, 102 (2005). hep-th/0507069 CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    D. Lust, S. Reffert, W. Schulgin, P. Tripathy, Fermion zero modes in the presence of fluxes and a non-perturbative superpotential. J. High Energy Phys. 0608, 071 (2006). hep-th/0509082 CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    R. Blumenhagen, M. Cvetic, R. Richter, T. Weigand, Lifting D-instanton zero modes by recombination and background fluxes. J. High Energy Phys. 0710, 098 (2007). arXiv:0708.0403 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    M. Billo, L. Ferro, M. Frau, F. Fucito, A. Lerda, J. Morales, Flux interactions on D-branes and instantons. J. High Energy Phys. 0810, 112 (2008). arXiv:0807.1666 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    A. Uranga, D-brane instantons and the effective field theory of flux compactifications. J. High Energy Phys. 0901, 048 (2009). arXiv:0808.2918 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    R. Blumenhagen, M. Cvetic, S. Kachru, T. Weigand, D-brane instantons in type II string theory. Ann. Rev. Nucl. Part. Sci. 59, 269 (2009). arXiv:0902.3251 [hep-th] CrossRefADSGoogle Scholar
  22. 22.
    E. Witten, Non-perturbative superpotentials in string theory. Nucl. Phys. B 474, 343 (1996). hep-th/9604030 zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    E. Witten, Small instantons in string theory. Nucl. Phys. B 460, 541 (1996). hep-th/9511030 zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    M. Cederwall, Boundaries of eleven-dimensional membranes. Mod. Phys. Lett. A 12, 2641 (1997). hep-th/9704161 zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    A. Sen, F theory and orientifolds. Nucl. Phys. B 475, 562 (1996). hep-th/9605150 zbMATHCrossRefADSGoogle Scholar
  26. 26.
    P. Tripathy, S. Trivedi, Compactification with flux on K3 and tori. J. High Energy Phys. 0303, 028 (2003). hep-th/0301139 CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    N. Dorey, T. Hollowood, V. Khoze, M. Mattis, Supersymmetry and multi-instanton measure 2. From N=4 to N=0. Nucl. Phys. B 519, 470 (1998). hep-th/9709072 zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    N. Dorey, T. Hollowood, V. Khoze, The calculus of many instantons. Phys. Rep. 371, 231 (2002). hep-th/0206063 zbMATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    S. Cherkis, J. Schwarz, Wrapping the M theory five-brane on K3. Phys. Lett. B 403, 225 (1997). hep-th/9703062 CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    N. Dorey, T. Hollowood, S. Kumar, An exact elliptic superpotential for N=1* deformations of finite N=2 gauge theories. Nucl. Phys. B 624, 95 (2002). hep-th/0108221 zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    E. Buchbinder, R. Donagi, B. Ovrut, Superpotentials for vector bundle moduli. Nucl. Phys. B 653, 400 (2003). hep-th/0205190 zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    E. Buchbinder, R. Donagi, B. Ovrut, Vector bundle moduli superpotentials in heterotic superstrings and M theory. J. High Energy Phys. 0207, 066 (2002). hep-th/0206203 CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Department of PhysicsPostechPohangKorea
  2. 2.Postech Center for Theoretical Physics (PCTP)PostechPohangKorea

Personalised recommendations