The European Physical Journal C

, Volume 66, Issue 3–4, pp 387–402 | Cite as

Asymptotic safety of simple Yukawa systems

Regular Article - Theoretical Physics

Abstract

We study the triviality and hierarchy problem of a Z2-invariant Yukawa system with massless fermions and a real scalar field, serving as a toy model for the standard-model Higgs sector. Using the functional RG, we look for UV stable fixed points which could render the system asymptotically safe. Whether a balancing of fermionic and bosonic contributions in the RG flow induces such a fixed point depends on the algebraic structure and the degrees of freedom of the system. Within the region of parameter space which can be controlled by a nonperturbative next-to-leading order derivative expansion of the effective action, we find no non-Gaußian fixed point in the case of one or more fermion flavors. The fermion-boson balancing can still be demonstrated within a model system with a small fractional flavor number in the symmetry-broken regime. The UV behavior of this small-Nf system is controlled by a conformal Higgs expectation value. The system has only two physical parameters, implying that the Higgs mass can be predicted. It also naturally explains the heavy mass of the top quark, since there are no RG trajectories connecting the UV fixed point with light top masses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.G. Wilson, J.B. Kogut, Phys. Rep. 12, 75 (1974) CrossRefADSGoogle Scholar
  2. 2.
    M. Luscher, P. Weisz, Nucl. Phys. B 295, 65 (1988) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    M. Luscher, P. Weisz, Nucl. Phys. B 318, 705 (1989) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    A. Hasenfratz, K. Jansen, C.B. Lang, T. Neuhaus, H. Yoneyama, Phys. Lett. B 199, 531 (1987) ADSGoogle Scholar
  5. 5.
    U.M. Heller, H. Neuberger, P.M. Vranas, Nucl. Phys. B 399, 271 (1993). arXiv:hep-lat/9207024 CrossRefADSGoogle Scholar
  6. 6.
    D.J.E. Callaway, Phys. Rep. 167, 241 (1988) CrossRefADSGoogle Scholar
  7. 7.
    O.J. Rosten, arXiv:0808.0082 [hep-th]
  8. 8.
    L.D. Landau, in Niels Bohr and the Development of Physics, ed. by W. Pauli (Pergamon, London, 1955) Google Scholar
  9. 9.
    M. Gell-Mann, F.E. Low, Phys. Rev. 95, 1300 (1954) MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    M. Goeckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz, H. Stuben, Phys. Rev. Lett. 80, 4119 (1998) CrossRefADSGoogle Scholar
  11. 11.
    M. Goeckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz, H. Stuben, Nucl. Phys. Proc. Suppl. 63, 694 (1998) CrossRefADSGoogle Scholar
  12. 12.
    H. Gies, J. Jaeckel, Phys. Rev. Lett. 93, 110405 (2004). arXiv:hep-ph/0405183 CrossRefADSGoogle Scholar
  13. 13.
    N. Cabibbo, L. Maiani, G. Parisi, R. Petronzio, Nucl. Phys. B 158, 295 (1979) CrossRefADSGoogle Scholar
  14. 14.
    L. Maiani, G. Parisi, R. Petronzio, Nucl. Phys. B 136, 115 (1978) CrossRefADSGoogle Scholar
  15. 15.
    J. Kuti, L. Lin, Y. Shen, Phys. Rev. Lett. 61, 678 (1988) CrossRefADSGoogle Scholar
  16. 16.
    T. Hambye, K. Riesselmann, Phys. Rev. D 55, 7255 (1997). arXiv:hep-ph/9610272 ADSGoogle Scholar
  17. 17.
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, PoS LAT2007, 056 (2007). arXiv:0710.3151 [hep-lat] Google Scholar
  18. 18.
    P. Gerhold, K. Jansen, J. Kallarackal, arXiv:0810.4447 [hep-lat]
  19. 19.
    F.J. Yndurain, in Ann Arbor 1991, Proceedings, Gauge theories—past and future, 337–353 Google Scholar
  20. 20.
    S. Weinberg, in C76-07-23.1 HUTP-76/160, Erice Subnucl. Phys., 1 (1976) Google Scholar
  21. 21.
    R. Percacci, arXiv:0709.3851 [hep-th]
  22. 22.
    B. Rosenstein, B.J. Warr, S.H. Park, Phys. Rev. Lett. 62, 1433 (1989) CrossRefADSGoogle Scholar
  23. 23.
    K. Gawedzki, A. Kupiainen, Phys. Rev. Lett. 55, 363 (1985) CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    C. de Calan, P.A. Faria da Veiga, J. Magnen, R. Seneor, Phys. Rev. Lett. 66, 3233 (1991) CrossRefADSGoogle Scholar
  25. 25.
    A. Codello, R. Percacci, arXiv:0810.0715 [hep-th]
  26. 26.
    M. Reuter, Phys. Rev. D 57, 971 (1998). arXiv:hep-th/9605030 CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    O. Lauscher, M. Reuter, Phys. Rev. D 65, 025013 (2002). arXiv:hep-th/0108040 MathSciNetADSGoogle Scholar
  28. 28.
    O. Lauscher, M. Reuter, Class. Quantum Gravity 19, 483 (2002). arXiv:hep-th/0110021 MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    W. Souma, Prog. Theor. Phys. 102, 181 (1999). arXiv:hep-th/9907027 CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    P. Forgacs, M. Niedermaier, arXiv:hep-th/0207028
  31. 31.
    R. Percacci, D. Perini, Phys. Rev. D 67, 081503 (2003). arXiv:hep-th/0207033 ADSGoogle Scholar
  32. 32.
    A. Codello, R. Percacci, C. Rahmede, Int. J. Mod. Phys. A 23, 143 (2008). arXiv:0705.1769 [hep-th] CrossRefADSGoogle Scholar
  33. 33.
    R. Percacci, D. Perini, Phys. Rev. D 68, 044018 (2003). arXiv:hep-th/0304222 ADSGoogle Scholar
  34. 34.
    H. Gies, Phys. Rev. D 68, 085015 (2003). arXiv:hep-th/0305208 ADSGoogle Scholar
  35. 35.
    H. Gies, J. Jaeckel, C. Wetterich, Phys. Rev. D 69, 105008 (2004). arXiv:hep-ph/0312034 ADSGoogle Scholar
  36. 36.
    J.M. Schwindt, C. Wetterich, arXiv:0812.4223 [hep-th]
  37. 37.
    S. Bornholdt, C. Wetterich, Phys. Lett. B 282(3–4), 399 (1992) ADSGoogle Scholar
  38. 38.
    C. Wetterich, Phys. Lett. B 301, 90 (1993) ADSGoogle Scholar
  39. 39.
    K. Aoki, Int. J. Mod. Phys. B 14, 1249 (2000) MathSciNetADSGoogle Scholar
  40. 40.
    J. Berges, N. Tetradis, C. Wetterich, Phys. Rep. 363, 223 (2002) MATHMathSciNetADSGoogle Scholar
  41. 41.
    D.F. Litim, J.M. Pawlowski, in The Exact Renormalization Group, ed. by Krasnitz, et al. (World Scientific, Singapore, 1999), p. 168 Google Scholar
  42. 42.
    J. Polonyi, Cent. Eur. J. Phys. 1, 1 (2004) CrossRefGoogle Scholar
  43. 43.
    J.M. Pawlowski, Ann. Phys. 322, 2831 (2007). arXiv:hep-th/0512261 MATHCrossRefMathSciNetADSGoogle Scholar
  44. 44.
  45. 45.
    B. Delamotte, arXiv:cond-mat/0702365
  46. 46.
    H. Gies, C. Gneiting, in preparation Google Scholar
  47. 47.
    C. Gneiting, Diploma thesis, Heidelberg (2005) Google Scholar
  48. 48.
    L. Rosa, P. Vitale, C. Wetterich, Phys. Rev. Lett. 86, 958 (2001). arXiv:hep-th/0007093 CrossRefADSGoogle Scholar
  49. 49.
    F. Hofling, C. Nowak, C. Wetterich, Phys. Rev. B 66, 205111 (2002). arXiv:cond-mat/0203588 CrossRefADSGoogle Scholar
  50. 50.
    D.F. Litim, Phys. Lett. B 486, 92 (2000). hep-th/0005245 ADSGoogle Scholar
  51. 51.
    D.F. Litim, Phys. Rev. D 64, 105007 (2001). hep-th/0103195 ADSGoogle Scholar
  52. 52.
    D.U. Jungnickel, C. Wetterich, Phys. Rev. D 53, 5142 (1996). arXiv:hep-ph/9505267 ADSGoogle Scholar
  53. 53.
    B.J. Schaefer, H.J. Pirner, Nucl. Phys. A 660, 439 (1999). arXiv:nucl-th/9903003 CrossRefADSGoogle Scholar
  54. 54.
    H. Gies, C. Wetterich, Phys. Rev. D 65, 065001 (2002). arXiv:hep-th/0107221 MathSciNetADSGoogle Scholar
  55. 55.
    H. Gies, C. Wetterich, Phys. Rev. D 69, 025001 (2004). arXiv:hep-th/0209183 ADSGoogle Scholar
  56. 56.
    J. Braun, arXiv:0810.1727 [hep-ph]
  57. 57.
    M.C. Birse, B. Krippa, J.A. McGovern, N.R. Walet, Phys. Lett. B 605, 287 (2005). arXiv:hep-ph/0406249 ADSGoogle Scholar
  58. 58.
    S. Diehl, H. Gies, J.M. Pawlowski, C. Wetterich, Phys. Rev. A 76, 053627 (2007). arXiv:cond-mat/0703366 CrossRefADSGoogle Scholar
  59. 59.
    S. Diehl, H. Gies, J.M. Pawlowski, C. Wetterich, Phys. Rev. A 76, 21602 (2007). arXiv:cond-mat/0701198 (Rap. Comm.) CrossRefADSGoogle Scholar
  60. 60.
    S. Floerchinger, M. Scherer, S. Diehl, C. Wetterich, arXiv:0808.0150 [cond-mat.supr-con]
  61. 61.
    K. Halpern, K. Huang, Phys. Rev. D 53, 3252 (1996). arXiv:hep-th/9510240 ADSGoogle Scholar
  62. 62.
    K. Halpern, K. Huang, Phys. Rev. Lett. 74, 3526 (1995). arXiv:hep-th/9406199 CrossRefADSGoogle Scholar
  63. 63.
    H. Gies, Phys. Rev. D 63, 065011 (2001). arXiv:hep-th/0009041 ADSGoogle Scholar
  64. 64.
    T.R. Morris, Nucl. Phys. B 458, 477 (1996). arXiv:hep-th/9508017 CrossRefADSGoogle Scholar
  65. 65.
    V.A. Miransky, M. Tanabashi, K. Yamawaki, Mod. Phys. Lett. A 4, 1043 (1989) CrossRefADSGoogle Scholar
  66. 66.
    V.A. Miransky, M. Tanabashi, K. Yamawaki, Phys. Lett. B 221, 177 (1989) ADSGoogle Scholar
  67. 67.
    W.A. Bardeen, C.N. Leung, S.T. Love, Phys. Rev. Lett. 56, 1230 (1986) CrossRefADSGoogle Scholar
  68. 68.
    J. Zinn-Justin, Nucl. Phys. B 367, 105 (1991) CrossRefMathSciNetADSGoogle Scholar
  69. 69.
    A. Hasenfratz, P. Hasenfratz, K. Jansen, J. Kuti, Y. Shen, Nucl. Phys. B 365, 79 (1991) CrossRefADSGoogle Scholar
  70. 70.
    M.B. Halpern, W. Siegel, Phys. Rev. D 16, 2486 (1977) ADSGoogle Scholar
  71. 71.
    H. Gies, J. Sanchez-Guillen, R.A. Vazquez, J. High Energy Phys. 0508, 067 (2005). arXiv:hep-th/0505275 CrossRefMathSciNetADSGoogle Scholar
  72. 72.
    J. Smit, Nucl. Phys. Proc. Suppl. 17, 3 (1990) CrossRefADSGoogle Scholar
  73. 73.
    J. Shigemitsu, Nucl. Phys. Proc. Suppl. 20, 515 (1991) CrossRefADSGoogle Scholar
  74. 74.
    K. Jansen, Phys. Rep. 273, 1 (1996). arXiv:hep-lat/9410018 CrossRefMathSciNetGoogle Scholar
  75. 75.
    I.H. Lee, J. Shigemitsu, R.E. Shrock, Nucl. Phys. B 334, 265 (1990) CrossRefADSGoogle Scholar
  76. 76.
    I.H. Lee, J. Shigemitsu, R.E. Shrock, Nucl. Phys. B 330, 225 (1990) CrossRefADSGoogle Scholar
  77. 77.
    R.E. Shrock, in Quantum Fields on the Computer, ed. by M. Creutz (ed.) (World Scientific, Singapore, 1992), pp. 150–210 Google Scholar
  78. 78.
    P. Gerhold, K. Jansen, J. High Energy Phys. 0710, 001 (2007). arXiv:0707.3849 [hep-lat] CrossRefADSGoogle Scholar
  79. 79.
    P. Gerhold, K. Jansen, J. High Energy Phys. 0709, 041 (2007). arXiv:0705.2539 [hep-lat] CrossRefADSGoogle Scholar
  80. 80.
    K. Jansen, J. Kuti, C. Liu, Phys. Lett. B 309, 119 (1993). arXiv:hep-lat/9305003 ADSGoogle Scholar
  81. 81.
    K. Jansen, J. Kuti, C. Liu, Phys. Lett. B 309, 127 (1993). arXiv:hep-lat/9305004 ADSGoogle Scholar
  82. 82.
    H. Gies, S. Rechenberger, M.M. Scherer, arXiv:0907.0327 [hep-th]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations