Advertisement

The European Physical Journal C

, Volume 66, Issue 1–2, pp 261–269 | Cite as

Strangephilic Higgs bosons in the MSSM

  • J. S. LeeEmail author
  • Y. Peters
  • A. Pilaftsis
  • C. Schwanenberger
Regular Article - Theoretical Physics

Abstract

We suggest a new CPX-derived scenario for the search for strangephilic MSSM Higgs bosons at the Tevatron and the LHC, in which all neutral and charged Higgs bosons decay predominantly into pairs of strange quarks and into a strange and a charm quark, respectively. The proposed scenario is realized within a particular region of the MSSM parameter space and requires large values of tan β, where threshold radiative corrections are significant to render the effective strange-quark Yukawa coupling dominant. Experimental searches for neutral Higgs bosons based on the identification of b-quark jets or τ leptons may miss a strangephilic Higgs boson and its existence could be inferred indirectly by searching for hadronically decaying charged Higgs bosons. Potential strategies and experimental challenges to search for strangephilic Higgs bosons at the Tevatron and the LHC are discussed.

Keywords

Higgs Boson Yukawa Coupling Strange Quark Threshold Correction Charm Quark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Barate et al. (The LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, and OPAL Collaborations), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033 CrossRefADSGoogle Scholar
  2. 2.
    S. Schael et al. (The LEP Working Group for Higgs Boson Searches, ALEPH, DELPHI, L3, and OPAL Collaborations), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042 CrossRefADSGoogle Scholar
  3. 3.
    M.S. Carena et al. (Higgs Working Group Collaboration), arXiv:hep-ph/0010338
  4. 4.
    G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512
  5. 5.
    G.L. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007) CrossRefADSGoogle Scholar
  6. 6.
    M.S. Carena, S. Mrenna, C.E.M. Wagner, Phys. Rev. D 62, 055008 (2000). arXiv:hep-ph/9907422 CrossRefADSGoogle Scholar
  7. 7.
    M.S. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, Eur. Phys. J. C 26, 601 (2003). arXiv:hep-ph/0202167 CrossRefADSGoogle Scholar
  8. 8.
    R. Hempfling, Phys. Rev. D 49, 6168 (1994) CrossRefADSGoogle Scholar
  9. 9.
    L.J. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048 (1994). arXiv:hep-ph/9306309 CrossRefADSGoogle Scholar
  10. 10.
    M.S. Carena, M. Olechowski, S. Pokorski, C.E.M. Wagner, Nucl. Phys. B 426, 269 (1994). arXiv:hep-ph/9402253 CrossRefADSGoogle Scholar
  11. 11.
    D.M. Pierce, J.A. Bagger, K.T. Matchev, R.J. Zhang, Nucl. Phys. B 491, 3 (1997). arXiv:hep-ph/9606211 CrossRefADSGoogle Scholar
  12. 12.
    F. Borzumati, G.R. Farrar, N. Polonsky, S.D. Thomas, Nucl. Phys. B 555, 53 (1999). arXiv:hep-ph/9902443 CrossRefADSGoogle Scholar
  13. 13.
    K.S. Babu, C.F. Kolda, Phys. Lett. B 451, 77 (1999). arXiv:hep-ph/9811308 CrossRefADSGoogle Scholar
  14. 14.
    J.S. Lee, A. Pilaftsis, M. Carena, S.Y. Choi, M. Drees, J.R. Ellis, C.E.M. Wagner, Comput. Phys. Commun. 156, 283 (2004). arXiv:hep-ph/0307377 CrossRefADSGoogle Scholar
  15. 15.
    J.S. Lee, M. Carena, J. Ellis, A. Pilaftsis, C.E.M. Wagner, Comput. Phys. Commun. 180, 312 (2009). arXiv:0712.2360 [hep-ph] CrossRefADSGoogle Scholar
  16. 16.
    F. Borzumati, J.S. Lee, W.Y. Song, Phys. Lett. B 595, 347 (2004). arXiv:hep-ph/0401024 CrossRefADSGoogle Scholar
  17. 17.
    A. Dedes, A. Pilaftsis, Phys. Rev. D 67, 015012 (2003). arXiv:hep-ph/0209306 CrossRefADSGoogle Scholar
  18. 18.
    A. Pilaftsis, Nucl. Phys. B 644, 263 (2002). arXiv:hep-ph/0207277 CrossRefADSGoogle Scholar
  19. 19.
    M. Carena, J.R. Ellis, A. Pilaftsis, C.E.M. Wagner, Phys. Lett. B 495, 155 (2000). arXiv:hep-ph/0009212 CrossRefADSGoogle Scholar
  20. 20.
    A. Heister et al. (ALEPH Collaboration), Phys. Lett. B 544, 25 (2002). arXiv:hep-ex/0205055 CrossRefADSGoogle Scholar
  21. 21.
    G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B 597, 11 (2004). arXiv:hep-ex/0312042 CrossRefADSGoogle Scholar
  22. 22.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, arXiv:0811.4169 [hep-ph]
  23. 23.
    M.S. Carena, H.E. Haber, S. Heinemeyer, W. Hollik, C.E.M. Wagner, G. Weiglein, Nucl. Phys. B 580, 29 (2000). arXiv:hep-ph/0001002 CrossRefADSGoogle Scholar
  24. 24.
    J.R. Ellis, J.S. Lee, A. Pilaftsis, J. High Energy Phys. 0810, 049 (2008). arXiv:0808.1819 [hep-ph] CrossRefADSGoogle Scholar
  25. 25.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 80, 071102 (2009). arXiv:0903.5525 [hep-ex] CrossRefGoogle Scholar
  26. 26.
    D0 Collaboration, D0 Note 5715-CONF (2008) Google Scholar
  27. 27.
    K.G. Chetyrkin, R. Harlander, T. Seidensticker, M. Steinhauser, arXiv:hep-ph/9910339
  28. 28.
    CDF Collaboration, Phys. Rev. Lett. 103, 101803 (2009). arXiv:0907.1269 [hep-ex] CrossRefGoogle Scholar
  29. 29.
    V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 682, 298 (2009). arXiv:0908.1811 [hep-ex] Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • J. S. Lee
    • 1
    Email author
  • Y. Peters
    • 2
  • A. Pilaftsis
    • 2
  • C. Schwanenberger
    • 2
  1. 1.Physics DivisionNational Center for Theoretical SciencesHsinchuTaiwan
  2. 2.School of Physics and AstronomyUniversity of ManchesterManchesterUK

Personalised recommendations