Advertisement

The European Physical Journal C

, Volume 66, Issue 1–2, pp 163–172 | Cite as

NLO prescription for unintegrated parton distributions

  • A. D. Martin
  • M. G. Ryskin
  • G. WattEmail author
Regular Article - Theoretical Physics

Abstract

We show how parton distributions unintegrated over the parton transverse momentum, k t , may be generated, at NLO accuracy, from the known integrated (DGLAP-evolved) parton densities determined from global data analyses. A few numerical examples are given, which demonstrate that sufficient accuracy is obtained by keeping only the LO splitting functions together with the NLO integrated parton densities. However, it is important to keep the precise kinematics of the process, by taking the scale to be the virtuality rather than the transverse momentum, in order to be consistent with the calculation of the NLO splitting functions.

Keywords

Transverse Momentum Splitting Function Sudakov Form Factor DGLAP Evolution DGLAP Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Watt, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 31, 73 (2003). arXiv:hep-ph/0306169 CrossRefADSGoogle Scholar
  2. 2.
    G. Watt, A.D. Martin, M.G. Ryskin, Phys. Rev. D 70, 014012 (2004). Erratum: Phys. Rev. D 70, 079902 (2004). arXiv:hep-ph/0309096 CrossRefADSGoogle Scholar
  3. 3.
    V.A. Saleev, Phys. Rev. D 78, 114031 (2008). arXiv:0812.0946 [hep-ph] CrossRefADSGoogle Scholar
  4. 4.
    F. Hautmann, H. Jung, J. High Energy Phys. 0810, 113 (2008). arXiv:0805.1049 [hep-ph] CrossRefADSGoogle Scholar
  5. 5.
    A.D. Martin, M.G. Ryskin, T. Teubner, Phys. Rev. D 62, 014022 (2000). arXiv:hep-ph/9912551 CrossRefADSGoogle Scholar
  6. 6.
    V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 14, 525 (2000). arXiv:hep-ph/0002072 CrossRefADSGoogle Scholar
  7. 7.
    V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 23, 311 (2002). arXiv:hep-ph/0111078 CrossRefADSGoogle Scholar
  8. 8.
    E.M. Levin, M.G. Ryskin, Y.M. Shabelski, A.G. Shuvaev, Sov. J. Nucl. Phys. 53, 657 (1991). [Yad. Fiz. 53, 1059 (1991)] Google Scholar
  9. 9.
    S. Catani, M. Ciafaloni, F. Hautmann, Nucl. Phys. B 366, 135 (1991) CrossRefADSGoogle Scholar
  10. 10.
    J.C. Collins, R.K. Ellis, Nucl. Phys. B 360, 3 (1991) CrossRefADSGoogle Scholar
  11. 11.
    M.A. Kimber, A.D. Martin, M.G. Ryskin, Phys. Rev. D 63, 114027 (2001). arXiv:hep-ph/0101348 CrossRefADSGoogle Scholar
  12. 12.
    J.C. Collins, X. Zu, J. High Energy Phys. 0503, 059 (2005). arXiv:hep-ph/0411332 CrossRefADSGoogle Scholar
  13. 13.
    J.C. Collins, T.C. Rogers, A.M. Stasto, Phys. Rev. D 77, 085009 (2008). arXiv:0708.2833 [hep-ph] CrossRefADSGoogle Scholar
  14. 14.
    S. Jadach, M. Skrzypek, arXiv:0905.1399 [hep-ph]
  15. 15.
    M. Slawinska, A. Kusina, arXiv:0905.1403 [hep-ph]
  16. 16.
    M. Skrzypek, S. Jadach, arXiv:0909.5588 [hep-ph]
  17. 17.
    Y.L. Dokshitzer, V.A. Khoze, A.H. Mueller, S.I. Troian, Basics of Perturbative QCD (Frontieres, Gif-sur-Yvette, 1991), 274 pp. Google Scholar
  18. 18.
    G. Curci, W. Furmanski, R. Petronzio, Nucl. Phys. B 175, 27 (1980) CrossRefADSGoogle Scholar
  19. 19.
    W. Furmanski, R. Petronzio, Phys. Lett. B 97, 437 (1980) CrossRefADSGoogle Scholar
  20. 20.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph] CrossRefGoogle Scholar
  21. 21.
    P.M. Nadolsky et al., Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 [hep-ph] CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamUK
  2. 2.Petersburg Nuclear Physics InstituteGatchinaRussia

Personalised recommendations