The European Physical Journal C

, Volume 65, Issue 3–4, pp 649–701 | Cite as

High-energy astrophysics with neutrino telescopes

Review

Abstract

Neutrino astrophysics offers new perspectives on the Universe investigation: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos with respect to photons. While the small interaction cross section of neutrinos allows them to come from the core of astrophysical objects, it is also a drawback, as their detection requires a large target mass. This is why it is convenient to put huge cosmic neutrino detectors in natural locations, like deep underwater or under-ice sites. In order to supply for such extremely hostile environmental conditions, new frontier technologies are under development. The aim of this work is to review the motivations for high-energy neutrino astrophysics, the present status of experimental results and the technologies used in underwater/ice Cherenkov experiments, with a special focus on the efforts for the construction of a km3-scale detector in the Mediterranean Sea.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Markov, in Proceedings Int. Conf. on High Energy Physics, Univ. of Rochester (1960), p. 183 Google Scholar
  2. 2.
    F. Halzen, Astroparticle physics with high energy neutrinos: from AMANDA to IceCube. Eur. Phys. J. C 46, 669–687 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    J. Babson et al. (The DUMAND Collaboration), Cosmic-ray muons in the deep ocean. Phys. Rev. D 42, 3613 (1990) ADSCrossRefGoogle Scholar
  4. 4.
    V. Aynutdinov et al. (Baikal Collaboration), The Baikal neutrino experiment: Status, selected physics results, and perspectives. Nucl. Instrum. Methods A 588, 99–106 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    E. Andres et al. (The AMANDA Collaboration), Observation of high-energy neutrinos using Cherenkov detectors embedded deep in Antarctic ice. Nature 410, 441 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Aguilar et al. (ANTARES Collaboration), Astropart. Phys. 26, 314 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    P. Piattelli (NEMO Collaboration), The Neutrino Mediterranean Observatory project. Nucl. Phys. Proc. Suppl. 143, 359 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    G. Aggouras et al. (NESTOR Collaboration), A measurement of the cosmic-ray muon flux with a module of the NESTOR neutrino telescope. Astropart. Phys. 23, 377–392 (2005) ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    A.M. Hillas, Recent progress and some current questions. astro-ph/0607109. The figure is due to T. Gaisser
  11. 11.
    P.L. Biermann, T.K. Gaisser, T. Stanev, Origin of galactic cosmic rays. Phys. Rev. D 51, 3450 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1990). ISBN0521326672 Google Scholar
  13. 13.
    P.K.F. Grieder, Cosmic Rays at Earth: Researcher‘s Reference Manual and Data Book (Elsevier, Amsterdam, 2001). ISBN 0444507108 Google Scholar
  14. 14.
    E. Fermi, On the origin of cosmic rays. Phys. Rev. 75, 1169 (1949) ADSCrossRefMATHGoogle Scholar
  15. 15.
    E. Fermi, Galactic magnetic fields and the origin of cosmic radiation. Astrophys. J. 119, 1–6 (1954) ADSCrossRefGoogle Scholar
  16. 16.
    V.L. Ginzburg, V.S. Ptuskin, On the origin of cosmic rays: some problems in high-energy astrophysics. Rev. Mod. Phys. 48, 161 (1976) ADSCrossRefGoogle Scholar
  17. 17.
    A.M. Hillas, Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J. Phys. G, Nucl. Part. Phys. 31, 39 (2005) CrossRefGoogle Scholar
  18. 18.
    E.G. Berezhko, L.T. Ksenofontov, Composition of cosmic rays accelerated in supernova remnants. J. Exp. Theor. Phys. 89, 391 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    V.L. Ginzburg, Y.M. Khazan, V.S. Ptuskin, Origin of cosmic rays—Galactic models with halo. I—Proton nucleon component. Astrophys. Space Sci. 68, 295–314 (1980) ADSCrossRefGoogle Scholar
  20. 20.
    J.R. Horandel, Models of the knee in the energy spectrum of cosmic rays. Astropart. Phys. 21, 241–265 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    D. Kazanas, A. Nicolaidis, Cosmic ray knee: a herald of new physics?, in Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany (2001). astro-ph/0103147
  22. 22.
    T. Antoni et al. (KASCADE Collaboration), Electron, muon, and hadron lateral distributions measured in air-showers by the KASCADE experiment. Astropart. Phys. 14, 245–260 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    C.E. Fichtel, J.I. Trombka, Gamma-ray astrophysics: New insight into the Universe. Technical report. NASA-RP-1386 (1997) Google Scholar
  24. 24.
    N. Gehrels, P. Michelson, GLAST: the next-generation high energy gamma ray astronomy mission. Astropart. Phys. 11, 277–282 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    A. Abdo et al. (Fermi LAT Collaboration), Fermi Large Area Telescope Bright gamma-rays source list. Astrophys. J. Suppl. 183, 46–66 (2009). arXiv:0902.1340 [astro-ph.HE] ADSCrossRefGoogle Scholar
  26. 26.
    T.C. Weekes et al., Observation of TeV gamma rays from the Crab nebula using the atmospheric Cherenkov imaging technique. Astrophys. J. 342, 379–395 (1989) ADSCrossRefGoogle Scholar
  27. 27.
    R. Mirzoyan et al., The first telescope of the HEGRA air Cherenkov imaging telescope array. Nucl. Instrum. Methods Phys. Res. A 351, 513–526 (1994) ADSCrossRefGoogle Scholar
  28. 28.
    J. Holder et al., Status and performance of the first VERITAS telescope. in Proceedings of the 29th International Cosmic Ray Conference, Pune, India (2005). astro-ph/0507451
  29. 29.
    R. Enomoto et al., Design study of CANGAROO-III, stereoscopic imaging atmospheric Cherenkov telescopes for sub-TeV gamma-ray. Astropart. Phys. 16, 235–244 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    J.A. Hinton, The status of the HESS project. New Astron. Rev. 48, 331–337 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    T.C. Weekes et al., VERITAS: the Very Energetic Radiation Imaging Telescope Array System. Astropart. Phys. 17, 221–243 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    J. Albert et al., Physics and Astrophysics with a ground-based gamma-ray telescope of low energy threshold. Astropart. Phys. 23, 493–509 (2005) ADSCrossRefGoogle Scholar
  33. 33.
    A. de Angelis et al., Very-high-energy gamma astrophysics. Riv. Nuovo Cimento 31, 187 (2008) Google Scholar
  34. 34.
    F. Aharonian et al., High energy astrophysics with ground-based gamma ray detectors. Rep. Prog. Phys. 71, 096901 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    F. Halzen, D. Hooper, High-energy neutrino astronomy: the Cosmic ray connection. Rep. Prog. Phys. 65, 1025–1078 (2002) ADSCrossRefGoogle Scholar
  36. 36.
    F.A. Aharonian, Very High Energy Cosmic Gamma-Ray Radiation (World Scientific, Singapore, 2004) Google Scholar
  37. 37.
    V. Berezinsky et al., Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990) Google Scholar
  38. 38.
    C. Stegmann, A. Kappes, J. Hinton, F. Aharonian, Potential neutrino signals in a northern hemisphere neutrino telescope from galactic gamma-ray sources. Astrophys. Space Sci. 309, 429 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    F. Aharonian et al., Detection of TeV gamma-ray emission from the shell-type supernova remnant RX J0852.0-4622 with HESS. Astron. Astrophys. L7, 437 (2005). astro-ph/0505380 Google Scholar
  40. 40.
    M.D. Kistler, J.F. Beacom, Guaranteed and prospective galactic TeV neutrino sources. Phys. Rev. D 74, 063007 (2006). astro-ph/0607082 ADSCrossRefGoogle Scholar
  41. 41.
    O. Reimer, M. Pohl, No hadronic TeV gamma-rays from SNR RX J1713.7-3946. Astron. Astrophys. L43, 390 (2002) Google Scholar
  42. 42.
    H. Muraishi et al., Evidence for TeV gamma-ray emission from the shell-type SNR RX J1713.7-3946. Astron. Astrophys. L57, 354 (2000) Google Scholar
  43. 43.
    R. Enomoto et al., The acceleration of cosmic-ray protons in the supernova remnant RX J1713.7-3946. Nature 416, 823 (2002) Astron. Astrophys. 449 223 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    J. Alvarez-Muniz, F. Halzen, Possible high-energy neutrinos from the cosmic accelerator RXJ1713.7-3946. Astrophys. J. L33, 576 (2002). astro-ph/0205408 Google Scholar
  45. 45.
    M.L. Costantini, F. Vissani, Expected neutrino signal from supernova remnant RXJ1713.7-3946 and flavor oscillations. Astropart. Phys. 23, 477–485 (2005) ADSCrossRefGoogle Scholar
  46. 46.
    F. Aharonian et al. (HESS Collaboration), A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astron. Astrophys. 449, 223–242 (2006) ADSCrossRefGoogle Scholar
  47. 47.
    D. Horns, F. Aharonian, A. Santangelo, A.I.D. Hoffmann, C. Masterson, Nucleonic gamma-ray production in Vela X. Astron. Astrophys. 451, 51 (2006) ADSCrossRefGoogle Scholar
  48. 48.
    D. Guetta, E. Amato, Neutrino flux predictions for galactic plerions. Astropart. Phys. 19, 403 (2003). astro-ph/0209537 ADSCrossRefGoogle Scholar
  49. 49.
    F. Aharonian et al. (HESS Collaboration), Very high energy gamma rays from the direction of Sagittarius A*. Astron. Astrophys. 425, L13–L17 (2004) ADSCrossRefGoogle Scholar
  50. 50.
    F. Aharonian et al. (HESS Collaboration), Very high energy gamma rays from the composite SNR G0.9+0.1. Astron. Astrophys. 432, L25–L29 (2005) ADSCrossRefGoogle Scholar
  51. 51.
    F. Aharonian et al. (HESS Collaboration), Discovery of very high energy gamma-rays from the galactic centre ridge. Nature 439, 695 (2006). astro-ph/0603021 ADSCrossRefGoogle Scholar
  52. 52.
    S. Chaty, Microquasars and jets, in Proceedings of Rencontres de Moriond, Very High Energy Phenomena in the Universe, La Thuile, Italy (2005). astro-ph/0506008
  53. 53.
    S. Migliari, R. Fender, M. Méndez, Iron emission lines from extended X-ray jets in SS 433: Reheating of atomic nuclei. Science 297, 1673 (2002) ADSCrossRefGoogle Scholar
  54. 54.
    J. Albert et al. (MAGIC Collaboration), Variable very high energy gamma-ray emission from the microquasar LS I+61 303. Science 312, 1771 (2006). astro-ph/0605549 ADSCrossRefGoogle Scholar
  55. 55.
    F. Aharonian et al. (HESS Collaboration), Discovery of very high energy gamma rays associated with an X-ray binary. Science 309, 746 (2005) ADSCrossRefGoogle Scholar
  56. 56.
    H. Anderhub et al. (MAGIC Collaboration), Correlated X-ray and very high energy emission in the gamma-ray binary LS I +61 303. arXiv:0910.4381v1
  57. 57.
    D.F. Torres, F. Halzen, LS I+61 303 as a potential neutrino source on the light of MAGIC results. astro-ph/0607368
  58. 58.
    F. Aharonian, L. Anchordoqui, D. Khangulyan, T. Montaruli, Microquasar LS 5039: a TeV gamma-ray emitter and a potential TeV neutrino source. J. Phys. Conf. Ser. 39, 408 (2006) ADSCrossRefGoogle Scholar
  59. 59.
    S. Aiello et al. (The NEMO Collaboration), Sensitivity of an underwater Cherenkov km3 telescope to TeV neutrinos from Galactic microquasars. Astropart. Phys. 28, 1–9 (2007) ADSCrossRefGoogle Scholar
  60. 60.
    R. Atkins et al. (MILAGRO Collaboration), Evidence for TeV gamma-ray emission from a region of the galactic plane. Phys. Rev. Lett. 95, 251103 (2005) ADSCrossRefGoogle Scholar
  61. 61.
    KM3neT: Conceptual design report. http://www.km3net.org/CDR/CDR-KM3NeT.pdf
  62. 62.
    W. Bednarek, G.F. Burgio, T. Montaruli, Galactic discrete sources of high energy neutrinos. New Astron. Rev. 49, 1 (2005). astro-ph/0404534 ADSCrossRefGoogle Scholar
  63. 63.
    G. D’Ali Staiti, The ARGO-YBJ experiment in Tibet. Nucl. Instrum. Methods A 588, 7 (2008). See also: http://argo.na.infn.it/ ADSCrossRefGoogle Scholar
  64. 64.
    MILAGRO project, http://www.lanl.gov/milagro
  65. 65.
  66. 66.
    F. Halzen et al., The highest energy cosmic ray. Astropart. Phys. 3, 151 (1995) ADSCrossRefGoogle Scholar
  67. 67.
    B. Peters, Primary cosmic radiation and extensive air showers. Nuovo Cimento 22, 800 (1961) CrossRefGoogle Scholar
  68. 68.
    P. Sokolsky, Introduction to Ultrahigh Energy Cosmic Ray Physics. Westview Press Advanced Book Program (2004) Google Scholar
  69. 69.
    M. Ostrowski, Mechanisms and sites of ultra-high energy cosmic ray origin. Astropart. Phys. 18, 229–236 (2002) ADSCrossRefGoogle Scholar
  70. 70.
    K. Greisen, End to the cosmic ray spectrum. Phys. Rev. Lett. 16, 748 (1966) ADSCrossRefGoogle Scholar
  71. 71.
    G.T. Zatsepin, V.A. Kuzmin, Upper limit of the spectrum of cosmic rays. Sov. Phys. JETP Lett. 4, 78 (1966) ADSGoogle Scholar
  72. 72.
    M. Takeda et al., Extension of the cosmic ray energy spectrum beyond the predicted Greisen–Zatsepin–Kuz’min cutoff. Phys. Rev. 81, 1163 (1998) ADSGoogle Scholar
  73. 73.
    T. Abu-Zayyad et al. (HiRes Collaboration), Measurement of the flux of ultrahigh energy cosmic rays from monocular observations by the high resolution Fly’s Eye experiment. Phys. Rev. Lett. 92, 151101 (2004) ADSCrossRefGoogle Scholar
  74. 74.
    Pierre Auger observatory: http://www.auger.org/
  75. 75.
    The Pierre Auger Collaboration, Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory. Astropart. Phys. 29, 243–256 (2008). arXiv:0712.1147 ADSCrossRefGoogle Scholar
  76. 76.
    J. Abraham et al., Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science 318, 938–943 (2007) ADSCrossRefGoogle Scholar
  77. 77.
    A. Achterberg et al. (IceCube Collaboration), On the selection of AGN neutrino source candidates for a source stacking analysis with Neutrino Telescopes. Astropart. Phys. 26, 282–300 (2006) ADSCrossRefGoogle Scholar
  78. 78.
    R. Engel, D. Seckel, T. Stanev, Neutrinos from propagation of ultra-high energy protons. Phys. Rev. D 64, 093010 (2001). astro-ph/0101216, and references therein ADSCrossRefGoogle Scholar
  79. 79.
    E. Waxman, Extra galactic sources of high energy neutrinos. Phys. Scr. T 121, 147 (2005). astro-ph/0502159 ADSCrossRefGoogle Scholar
  80. 80.
    R.V.E. Lovelace, Dynamo model of double radio sources. Nature 262, 649 (1976) ADSCrossRefGoogle Scholar
  81. 81.
    K. Mannheim, High-energy neutrinos from extragalactic jets. Astropart. Phys. 3, 295 (1995) ADSCrossRefGoogle Scholar
  82. 82.
    F. Halzen, E. Zas, Neutrino fluxes from active galaxies: A model independent estimate. Astrophys. J. 488, 669 (1997) ADSCrossRefGoogle Scholar
  83. 83.
    R.J. Protheroe, High energy neutrinos from blazars. ASP Conf. Ser. 121, 585 (1997) ADSGoogle Scholar
  84. 84.
    J.K. Becker, P.L. Biermann, W. Rhode, The diffuse neutrino flux from FR-II radio galaxies and blazars: A source property based estimate. Astropart. Phys. 23, 355–368 (2005). astro-ph/0502089 ADSCrossRefGoogle Scholar
  85. 85.
    F. Halzen, A. O’Murchadha, Neutrinos from Auger sources. arXiv:0802.0887 [astro-ph]
  86. 86.
    R.C. Hartman et al. (EGRET Collaboration), The third EGRET catalog of high-energy gamma-ray sources. Astrophys. J. Suppl. Ser. 123, 79–202 (1999). ftp://gamma.gsfc.nasa.gov/pub/THIRD_CATALOG/ ADSCrossRefGoogle Scholar
  87. 87.
    F. Aharonian et al. (H.E.S.S. Collaboration), A low level of extragalactic background light as revealed by big gamma-rays from blazars. Nature 440, 1018–1021 (2006) ADSCrossRefGoogle Scholar
  88. 88.
    W. Benbow et al. (H.E.S.S. Collaboration), A spectacular VHE gamma-ray outburst from PKS 2155-304 in 2006, in Proc. 30th International Cosmic Ray Conference, Merida, 2007 Google Scholar
  89. 89.
    T.J. Galama et al., Discovery of the peculiar supernova 1998bw in the error box of GRB980425. Nature 395, 670 (1998) ADSCrossRefGoogle Scholar
  90. 90.
    K.Z. Stanek et al., Spectroscopic discovery of the supernova 2003dh associated with GRB030329. Astrophys. J. L17, 591 (2003) Google Scholar
  91. 91.
    J. Hjorth et al., A very energetic supernova associated with the gamma-ray burst of 29 March 2003. Nature 423, 847 (2003) ADSCrossRefGoogle Scholar
  92. 92.
  93. 93.
    E. Waxman, J.N. Bahcall, High energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78, 2292 (1997) ADSCrossRefGoogle Scholar
  94. 94.
    K. Murase, High energy neutrino early afterglows from gamma-ray bursts revisited. Phys. Rev. D 76, 123001 (2007) ADSCrossRefGoogle Scholar
  95. 95.
  96. 96.
    D. Guetta et al., Neutrinos from individual gamma-ray bursts in the BATSE catalog. Astropart. Phys. 20, 429 (2004). astro-ph/0302524 ADSCrossRefGoogle Scholar
  97. 97.
    M. Bouwhuis, Detection of neutrinos from gamma ray bursts. PhD thesis (July 2005), Amsterdam University, Amsterdam, The Netherlands. http://antares.in2p3.fr/Publications/
  98. 98.
    J.A. Aguilar et al. (The ANTARES Collaboration), The data acquisition system for the ANTARES neutrino telescope. Nucl. Instrum. Methods A 570, 107 (2007) ADSCrossRefGoogle Scholar
  99. 99.
    M. Bouwhuis (ANTARES Collaboration), Search for gamma-ray bursts with the ANTARES neutrino telescope, in Proceedings of the 31st ICRC, Lodz (2009). arXiv:0908.0818
  100. 100.
    H. Dannerbauer et al., Follow-up near-infrared spectroscopy of ultraluminous infrared galaxies observed by ISO. Astron. Astrophys. 441, 999 (2005) ADSCrossRefGoogle Scholar
  101. 101.
    V. Springel et al., Modeling feedback from stars and black holes in galaxy mergers. Astron. Soc. 361, 776 (2005) CrossRefGoogle Scholar
  102. 102.
    F. Acero et al. (H.E.S.S. Collaboration), Detection of gamma rays from a starburst galaxy. Sci. Express, Sept. 24, 2009. arXiv:0909.4651
  103. 103.
    N. Karlsson (VERITAS Collaboration), VERITAS detection of starburst galaxy M 82, in 2009 Fermi Symposium Google Scholar
  104. 104.
    A. Loeb, E. Waxman, The cumulative background of high-energy neutrinos from starburst galaxies. J. Control. Astropart. Phys. 0605, 003 (2006). astro-ph/0601695 ADSCrossRefGoogle Scholar
  105. 105.
    P. Sreekumar et al. (EGRET Collaboration), EGRET observations of the extragalactic gamma-ray emission. Astrophys. J. 494, 523–534 (2000) CrossRefGoogle Scholar
  106. 106.
    E. Waxman, J. Bahcall, High energy neutrinos from astrophysical sources: An upper bound. Phys. Rev. D 59, 023002 (1998) ADSCrossRefGoogle Scholar
  107. 107.
    J. Bahcall, E. Waxman, High energy astrophysical neutrinos: The upper bound is robust. Phys. Rev. D 64, 023002 (2001) ADSCrossRefGoogle Scholar
  108. 108.
    K. Mannheim, R.J. Protheroe, J.P. Rachen, Cosmic ray bound for models of extragalactic neutrino production. Phys. Rev. D 63, 023003 (2000) ADSCrossRefGoogle Scholar
  109. 109.
    J. Zornoza, Sensitivity to diffuse fluxes and energy spectrum reconstruction in the Antares neutrino telescope. Ph.D. thesis. Universitat de Valéncia, Valéncia, Spain (January 2005). http://antares.in2p3.fr/Publications/
  110. 110.
    W. Rhode et al. (Frejus Collaboration), Limits on the flux of very high energy neutrinos with the Fréjus detector. Astropart. Phys. 4, 217 (1996) ADSCrossRefGoogle Scholar
  111. 111.
    M. Ambrosio et al. (MACRO Collaboration), Search for diffuse neutrino flux from astrophysical sources with MACRO. Astropart. Phys. 19, 1 (2003) ADSCrossRefGoogle Scholar
  112. 112.
    V. Aynutdinov et al., Search for a diffuse flux of high-energy extraterrestrial neutrinos with the NT200 neutrino telescope. Astropart. Phys. 25, 140–150 (2006). astro-ph/0508675 ADSCrossRefGoogle Scholar
  113. 113.
    A. Achterberg et al. (IceCube Collaboration), Multiyear search for a diffuse flux of muon neutrinos with AMANDA II. Phys. Rev. D 76, 042008 (2007) ADSCrossRefGoogle Scholar
  114. 114.
    M. Ackermann et al. (AMANDA Collaboration), Search for ultra-high-energy neutrinos with AMANDA-II. Astrophys. J. 675, 1014 (2008) ADSCrossRefGoogle Scholar
  115. 115.
    G. Fiorentini, A. Naumov, F.L. Villante, Atmospheric neutrino flux supported by recent muon experiments. Phys. Lett. B 510, 173–188 (2001) ADSCrossRefGoogle Scholar
  116. 116.
    G. t’Hooft, Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276 (1974) MathSciNetADSCrossRefGoogle Scholar
  117. 117.
    A.M. Polyakov, Sov. Phys. JETP Lett. 20, 194 (1974) ADSGoogle Scholar
  118. 118.
    E.N. Parker, The origin of magnetic fields. Astrophys. J. 160, 383 (1970) ADSCrossRefGoogle Scholar
  119. 119.
    M.S. Turner et al., Magnetic monopoles and the survival of galactic magnetic fields. Phys. Rev. D 26, 1296 (1982) ADSCrossRefGoogle Scholar
  120. 120.
    M. Ambrosio et al. (MACRO Collaboration), Final results of magnetic monopole searches with the MACRO experiment. Eur. Phys. J. C 25, 511–522 (2002) ADSCrossRefGoogle Scholar
  121. 121.
    B. van Rens, Detection of MM below the Cherenkov limit. Ph.D. thesis, Amsterdam (2006). See: http://antares.in2p3.fr/Publications/
  122. 122.
    J. Derkaoui et al., Energy losses of magnetic monopoles and dyons in the Earth. Astropart. Phys. 9, 173 (1998) ADSCrossRefGoogle Scholar
  123. 123.
    S.D. Wick et al., Signatures for a cosmic flux of magnetic monopoles. Astropart. Phys. 18, 663–687 (2003) ADSCrossRefGoogle Scholar
  124. 124.
    K. Antipin et al. (BAIKAL Collaboration), The Baikal neutrino telescope: selected physics results. arXiv:0710.3064v1 [astro-ph]
  125. 125.
    P. Niessen, Search for relativistic MM with the AMANDA detector. Ph.D. thesis, Humboldt University, Berlin (2001) Google Scholar
  126. 126.
    S. Orito et al., Search for supermassive relics with a 2000 m2 array of plastic track detectors. Phys. Rev. Lett. 66, 1951 (1991) ADSCrossRefGoogle Scholar
  127. 127.
    A. De Rujula, S.L. Glashow, Nuclearites: a novel form of cosmic radiation. Nature 312, 734 (1984) ADSCrossRefGoogle Scholar
  128. 128.
    M. Ambrosio et al. (The MACRO Collaboration), Nuclearite search with the MACRO detector at Gran Sasso. Eur. Phys. J. C 13, 453–458 (2000) ADSCrossRefGoogle Scholar
  129. 129.
    G. Pavalas (ANTARES Collaboration), Search for exotic physics with the ANTARES detector. arXiv:0908.0860 [astro-ph.IM]
  130. 130.
    G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005) ADSCrossRefGoogle Scholar
  131. 131.
    H.E. Haber, G.L. Kane, The search for supersymmetry: Probing physics beyond the standard model. Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  132. 132.
    N. Fornengo, Status and perspectives of indirect and direct dark matter searches. Adv. Space Res. 41, 2010–2018 (2008). arXiv:astro-ph/0612786v1 ADSCrossRefGoogle Scholar
  133. 133.
    S. Desai et al. (SK Collaboration), Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande. Phys. Rev. D 70, 083523 (2004) ADSCrossRefGoogle Scholar
  134. 134.
    M. Ambrosio et al. (MACRO Collaboration), Limits on dark matter wimps using upward going muons in the MACRO detector. Phys. Rev. D 60, 082002 (1999) ADSCrossRefGoogle Scholar
  135. 135.
    D. Hubert (IceCube Collaboration), Neutralino dark matter searches with neutrino telescopes: AMANDA results and IceCube prospects. Nucl. Phys. B, Proc. Suppl. 173, 87–90 (2007) ADSCrossRefGoogle Scholar
  136. 136.
    V.M. Aynutdinov et al. (Baikal Collaboration), The Baikal neutrino experiment: status and beyond. Phys. At. Nucl. 67(6), 1161–1171 (2004) CrossRefGoogle Scholar
  137. 137.
    G.M.A. Lim (ANTARES Collaboration), First results on the search for dark matter in the Sun with the ANTARES neutrino telescope, in ICRC 2009. arXiv:0905.2316 (2009)
  138. 138.
    R. Trotta, R. Ruiz de Austri, C. Pérez de los Heros, Prospects for dark matter detection with IceCube in the context of the CMSSM. J. Cosmol. Astropart. Phys. 0908, 034 (2009). arXiv:0906.0366 ADSCrossRefGoogle Scholar
  139. 139.
    C. Giunti, Neutrino flavor states and the quantum theory of neutrino oscillations. J. Phys. G, Nucl. Part. Phys. 34, R93–R109 (2007). arXiv:hep-ph/0608070. See also the very interesting and exhaustive web page on neutrinos: http://www.nu.to.infn.it/ ADSCrossRefGoogle Scholar
  140. 140.
    W.-M. Yao et al. (Particle Data Group), Review of particle physics. J. Phys. G 33, 1 (2006) and 2007 partial update for the 2008 edition ADSCrossRefGoogle Scholar
  141. 141.
    J.G. Learned, S. Pakvasa, Detecting nu-tau oscillations as PeV energies. Astropart. Phys. 3, 267 (1995) ADSCrossRefGoogle Scholar
  142. 142.
    G.L. Fogli et al. Testing violations of special and general relativity through the energy dependence of ν μν τ oscillations in the Super-Kamiokande atmospheric neutrino experiment. Phys. Rev. D 60, 053006 (1999) ADSCrossRefGoogle Scholar
  143. 143.
    M.C. Gonzalez-Garcia, M. Maltoni, Atmospheric neutrino oscillations and new physics. Phys. Rev. D 70, 033010 (2004) ADSCrossRefGoogle Scholar
  144. 144.
    D. Morgan et al., Neutrino telescope modelling of Lorentz invariance violation in oscillations of atmospheric neutrinos. Astropart. Phys. 29, 345–354 (2008) ADSCrossRefGoogle Scholar
  145. 145.
    O.W. Greenberg, CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett. 89, 231602 (2002) ADSCrossRefGoogle Scholar
  146. 146.
    G. Battistoni et al., Search for a Lorentz invariance violation contribution in atmospheric neutrino oscillations using MACRO data. Phys. Lett. B 615, 14 (2005) ADSCrossRefGoogle Scholar
  147. 147.
    J.L. Kelley (IceCube Collaboration), Testing Lorentz Invariance using atmospheric neutrinos and AMANDA-II. astro-ph/0701333
  148. 148.
    M. Gasperini, Testing the principle of equivalence with neutrino oscillations. Phys. Rev. D 38, 2635 (1988) ADSCrossRefGoogle Scholar
  149. 149.
    V. Van Elewyck (ANTARES Collaboration), Searching for high-energy neutrinos in coincidence with gravitational waves with the ANTARES and VIRGO/LIGO detectors. arXiv:0908.2454 [astro-ph.IM]
  150. 150.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 12, 1633 (2003) ADSCrossRefGoogle Scholar
  151. 151.
    S. Choubey, S.F. King, Phys. Rev. D 67, 073005 (2003) ADSCrossRefGoogle Scholar
  152. 152.
    U. Jacob, T. Piran, Nat. Phys. 3, 87 (2007) CrossRefGoogle Scholar
  153. 153.
    F. Acernese (VIRGO Collaboration), Virgo status. Class. Quantum Gravity 25, 184001 (2008). See also: http://www.virgo.infn.it/ ADSCrossRefGoogle Scholar
  154. 154.
    D. Sigg (LIGO Collaboration), Status of the LIGO detectors. Class. Quantum Gravity 25, 114041 (2008). See also: http://www.ligo.caltech.edu/ ADSCrossRefGoogle Scholar
  155. 155.
    P. Sapienza, G. Riccobene, High-energy neutrino astronomy. Riv. Nuovo Cimento 32(12), 591 (2009) Google Scholar
  156. 156.
    R. Gandhi et al., Ultrahigh-energy neutrino interactions. Astropart. Phys. 5, 81 (1996) ADSCrossRefGoogle Scholar
  157. 157.
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 07, 012 (2002). hep-ph/0201195 ADSCrossRefGoogle Scholar
  158. 158.
  159. 159.
    M. Ambrosio et al., Neutrino astronomy with the MACRO detector. Astrophys. J. 546, 1038–1054 (2001) ADSCrossRefGoogle Scholar
  160. 160.
    K. Abe et al., High energy neutrino astronomy using upward-going muons in Super-Kamiokande-I. Astrophys. J. 652, 198–205 (2006) ADSCrossRefGoogle Scholar
  161. 161.
    M. Bazzotti, Studies of the atmospheric muon flux with the ANTARES detector. Ph.D. thesis (Mars 2009). Università degli studi di Bologna, Bologna, Italy. http://antares.in2p3.fr/Publications/
  162. 162.
    Y. Becherini, A. Margiotta, M. Sioli, M. Spurio, A parameterisation of single and multiple muons in the deep water or ice. Astropart. Phys. 25, 1–13 (2006) ADSCrossRefGoogle Scholar
  163. 163.
    V. Agrawal, T.K. Gaisser, P. Lipari, T. Stanev, Atmospheric neutrino flux above 1 GeV. Phys. Rev. D 53, 1314 (1996) ADSCrossRefGoogle Scholar
  164. 164.
    F. Halzen, D. Saltzberg, Tau neutrino appearance with a 1000 megaparsec baseline. Phys. Rev. Lett. 81, 4305 (1998) ADSCrossRefGoogle Scholar
  165. 165.
    B.D. Hartmann, Reconstruction of neutrino-induced hadronic and electromagnetic showers with the ANTARES experiment. Ph.D. thesis. Erlangen University (2006). FAU-PI1-DISS-06-001. http://antares.in2p3.fr/
  166. 166.
    S.L. Glashow, Resonant scattering of antineutrinos. Phys. Rev. 118, 316 (1960) ADSCrossRefGoogle Scholar
  167. 167.
    L. Landau, I. Pomeranchuk, Dokl. Akad. Nauk SSSR 92, 735 (1953); [English translation: L. Landau, The Collected Papers of L.D. Landau (Pergamon, New York, 1965), p. 589] MATHGoogle Scholar
  168. 168.
    A.B. Migdal, Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev. 103(6), 1811 (1956) ADSCrossRefMATHGoogle Scholar
  169. 169.
    J. Brunner, Antares simulation tools, in VLVnT Workshop on Technical Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea, Amsterdam, The Netherlands, 5–8 Oct 2003. http://www.vlvnt.nl/proceedings/
  170. 170.
    D.E. Groom et al., Muon stopping power and range tables 10 MeV–100 TeV. At. Data Nucl. Data Tables 78(2), 183–356 (2001) ADSCrossRefGoogle Scholar
  171. 171.
    P. Lipari, T. Stanev, Propagation of multi-TeV muons. Phys. Rev. D 44, 3543 (1991) ADSCrossRefGoogle Scholar
  172. 172.
    P.A. Cherenkov, Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378 (1937) ADSCrossRefGoogle Scholar
  173. 173.
    F. Aharonian et al. (HEGRA Collaboration), The Crab nebula and pulsar between 500 GeV and 80 TeV. Observations with the HEGRA stereoscopic air cherenkov telescopes. Astrophys. J. 614, 897 (2004) ADSCrossRefGoogle Scholar
  174. 174.
    A. Achterberg, Y.A. Gallant, J.G. Kirk, A.W. Guthmann, Particle acceleration by ultra-relativistic shocks: theory and simulations. Mon. Not. R. Astron. Soc. 328, 393 (2001). astro-ph/0107530 ADSCrossRefGoogle Scholar
  175. 175.
    T.C. Weekes et al., Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342, 379 (1989) ADSCrossRefGoogle Scholar
  176. 176.
    F. Ahronian et al. (The HESS Collaboration), Observations of the Crab nebula with H.E.S.S. Astron. Astrophys. 457, 899–915 (2006) ADSCrossRefGoogle Scholar
  177. 177.
    T.K. Gaisser, F. Halzen, T. Stanev, Particle astrophysics with high-energy neutrinos. Phys. Rep. 258, 173–236 (1995); Erratum-ibid. 271, 355–356 (1996). arXiv:hep-ph/9410384v1 ADSCrossRefGoogle Scholar
  178. 178.
    D.J.L. Bailey, Monte Carlo tools and analysis methods of understanding the ANTARES experiment and predicting its sensitivity to Dark Matter. Ph.D. thesis, University of Oxford, United Kingdom (2002) Google Scholar
  179. 179.
    M. Ackermann et al., Optical properties of deep glacial ice at the South Pole. J. Geophys. Res. 111(D13), 1–4 (2006) MathSciNetCrossRefGoogle Scholar
  180. 180.
    Y.R. Whitehead, On the properties of ice at the IceCube neutrino telescope. Master of Science thesis, University of Canterbury, Christchurch, New Zealand (2008). http://www.icecube.wisc.edu/science/
  181. 181.
    Y. He, P. Price, Remote sensing of dust in deep ice at the South Pole. J. Geophys. Res. 103(D14), 17041–17056 (1998) ADSCrossRefGoogle Scholar
  182. 182.
    G. Riccobene et al., Deep seawater inherent optical properties in the southern ionian sea. Astropart. Phys. 27, 1–9 (2007) ADSCrossRefGoogle Scholar
  183. 183.
    R.C. Smith, K.S. Baker, Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20, 177 (1981) ADSCrossRefGoogle Scholar
  184. 184.
  185. 185.
    C.D. Mobley, Light and Water (Academic Press, San Diego, 1994) Google Scholar
  186. 186.
    M. Circella, The construction of ANTARES, the first undersea neutrino telescope. Nucl. Instrum. Methods A 602, 1–6 (2009) ADSCrossRefGoogle Scholar
  187. 187.
    R.M. Pope, E.S. Fry, Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710–8723 (1997) ADSCrossRefGoogle Scholar
  188. 188.
    L. Kou, D. Labriel, P. Chylek, Refractive indices of water and ice in the 0.65 to 2.5 μm spectral range. Appl. Opt. 32, 3531 (1993) ADSCrossRefGoogle Scholar
  189. 189.
    P.J. Henning, Bioluminescence in Action (Academic Press, London, 1978) Google Scholar
  190. 190.
    E.A. Widder, I.M. Latz, J.F. Case, Marine bioluminescence spectra measured with an optical multichannel detection system. Biol. Bull. 165, 791 (1983) CrossRefGoogle Scholar
  191. 191.
    E.J.V. Gillibrand et al., Seasonal development of a deep pelagic bioluminescent layer in the temperate NE Atlantic Ocean. Mar. Ecol. Prog. Ser. 341, 37 (2007) CrossRefGoogle Scholar
  192. 192.
    I.G. Priede et al., Bioluminescence in the deep sea: free-fall lander observations in Atlantic Ocean off Cape Verde. Deep Sea Res. I 53, 1272 (2006) CrossRefGoogle Scholar
  193. 193.
    J. Lundberg et al., Light tracking through ice and water—scattering and absorption in heterogenous media with PHOTONICS. Nucl. Instrum. Methods A 581, 619–631 (2007) ADSCrossRefGoogle Scholar
  194. 194.
    J. Dumm, H. Landsman (IceCube Collaboration), IceCube—first results. J. Phys. Conf. Ser. 60, 334–336 (2007) ADSCrossRefGoogle Scholar
  195. 195.
    J. Ahrens et al. (The AMANDA Collaboration), Muon track reconstruction and data selection techniques in AMANDA. Nucl. Instrum. Methods A 524, 169–194 (2004) ADSCrossRefGoogle Scholar
  196. 196.
    A. Heijboer, Track reconstruction and point source searches with Antares. Ph.D. thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands (2004). http://antares.in2p3.fr/Publications/
  197. 197.
    G. Carminati, M. Bazzotti, A. Margiotta, M. Spurio, Atmospheric MUons from parametric formulas: a fast generator for neutrino telescopes (MUPAGE). Comput. Phys. Commun. 179, 915 (2008). arXiv:0802.0562 [physics.ins-det] ADSCrossRefGoogle Scholar
  198. 198.
    G. Carminati, A. Margiotta, M. Spurio, MUons from parametric formulas: A fast Generator of atmospheric μ-bundles for neutrino telescopes (MUPAGE). Nucl. Instrum. Methods A 602, 95 (2009) ADSCrossRefGoogle Scholar
  199. 199.
  200. 200.
    A. Roberts, The birth of high-energy neutrino astronomy: A personal history of the DUMAND project. Rev. Mod. Phys. 64, 259 (1992) ADSCrossRefGoogle Scholar
  201. 201.
  202. 202.
    L. Kuzmichev (Baikal Collaboration), The Baikal neutrino experiment: from NT200 to NT200+, in ICRC 2005 Google Scholar
  203. 203.
    S.R. Klein, IceCube: A cubic kilometer radiation detector. arXiv:0807.0034v2 [physics.ins-det]
  204. 204.
    J. Ahrens et al. (IceCube Collaboration), IceCube preliminary design document. http://icecube.wisc.edu
  205. 205.
    T. Gaisser et al. (IceCube Collaboration), Performance of the IceTop array, in ICRC 2007 Proc., Merida, pp. 15–18. arXiv:0711.0353
  206. 206.
    C. Portello-Roucelle, High energy neutrinos from the cold: status and prospects of the IceCube experiment. arXiv:0805.3546 [astro-ph]
  207. 207.
  208. 208.
    A. Achterberg et al. (AMANDA Collaboration), First year performance of the IceCube neutrino telescope. Astropart. Phys. 26, 155–173 (2006) ADSCrossRefGoogle Scholar
  209. 209.
    F. Halzen, J.E. Jacobsen, E. Zas, Ultra-transparent Antarctic ice as a supernova detector. Phys. Rev. D 53, 7359–7361 (1996). arXiv:astro-ph/9512080v1 ADSCrossRefGoogle Scholar
  210. 210.
    A. Achterberg et al. (IceCube Collaboration), Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope. Phys. Rev. D 75, 102001 (2007). arXiv:astro-ph/0611063 ADSCrossRefGoogle Scholar
  211. 211.
    A. Achterberg et al. (IceCube Collaboration), Detection of atmospheric muon neutrinos with the IceCube 9-string detector. Phys. Rev. D 76, 027101 (2007) ADSCrossRefGoogle Scholar
  212. 212.
    J.L. Bazo Alba (IceCube Collaboration), Search for neutrino point sources with IceCube 22-strings. arXiv:0811.4110v1 [astro-ph]
  213. 213.
    J. Braun et al., Methods for point source analysis in high energy neutrino telescopes. Astropart. Phys. 29, 299 (2008) ADSCrossRefGoogle Scholar
  214. 214.
    C. Finley et al. (IceCube Collaboration), Nine-string IceCube point source analysis, in ICRC2007 Proc., Merida, pp. 107–110. arXiv:0711.0353
  215. 215.
    K. Hoshina, J. Hodges, G.C. Hill (IceCube Collaboration), Searches for a diffuse flux of extra-terrestrial muon neutrinos with AMANDA-II and IceCube, in ICRC2007 Proc., Merida, pp. 67–70. arXiv:0711.0353
  216. 216.
    A. Achterberg et al. (AMANDA Collaboration), Limits on the muon flux from neutralino annihilations at the center of the earth with AMANDA. Astropart. Phys. 26, 129 (2006) ADSCrossRefGoogle Scholar
  217. 217.
    M. Ackermann et al. (AMANDA Collaboration), Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector. Astropart. Phys. 24, 459 (2006). arXiv:astroph/0508518 ADSCrossRefGoogle Scholar
  218. 218.
    J. Alvarez-Muñiz, F. Halzen, Possible high-energy neutrinos from the cosmic accelerator RX J1713.7-3946. Astrophys. J. 576, L33–L36 (2002). arXiv:astro-ph/0205408v3 ADSCrossRefGoogle Scholar
  219. 219.
    H. Landsmann et al. (IceCube Collaboration), Radio detection of GZK neutrinos—AURA status and plans, in ICRC2007 Proc., Merida, pp. 163–166. arXiv:0711.0353
  220. 220.
    For more information and for a complete list of the ANTARES members, see: http://antares.in2p3.fr
  221. 221.
    P. Amram et al., Background light in potential sites for the ANTARES undersea neutrino telescope. Astropart. Phys. 13, 127–136 (2000) ADSCrossRefGoogle Scholar
  222. 222.
    J.A. Aguilar et al., Transmission of light in deep sea water at the site of the Antares neutrino telescope. Astropart. Phys. 23, 131–155 (2005) MathSciNetADSCrossRefGoogle Scholar
  223. 223.
    P. Amram et al., Sedimentation and fouling of optical surfaces at the ANTARES site. Astropart. Phys. 19, 253–267 (2003) ADSCrossRefGoogle Scholar
  224. 224.
    P. Amram et al., The ANTARES optical module. Nucl. Instrum. Methods A 484, 369 (2002) ADSCrossRefGoogle Scholar
  225. 225.
    M. Ageron et al., Studies of a full scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements. Nucl. Instrum. Methods A 581, 695–708 (2007) ADSCrossRefGoogle Scholar
  226. 226.
    M. Ageron et al., Performance of the first ANTARES detector line. Astropart. Phys. 31, 277–283 (2009). arXiv:0812.2095 [astro-ph] ADSCrossRefGoogle Scholar
  227. 227.
    J.A. Aguilar et al., Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope. Nucl. Instrum. Methods A 555, 132–141 (2005) ADSCrossRefGoogle Scholar
  228. 228.
    J.A. Aguilar et al., The data acquisition system for the ANTARES neutrino telescope. Nucl. Instrum. Methods A 570, 107–116 (2007) ADSCrossRefGoogle Scholar
  229. 229.
    J. Aguilar, Analysis of the optical beacon system and search for point-like sources in the ANTARES neutrino telescope. Ph.D. thesis, CSIC, Valencia, Spain (December 2007). http://antares.in2p3.fr/Publications/
  230. 230.
    M. Ageron et al., The Antares optical beacon system. Nucl. Instrum. Methods A 578, 498–507 (2007) ADSCrossRefGoogle Scholar
  231. 231.
    A. Margiotta (ANTARES Collaboration), Systematic uncertainties in Monte Carlo simulations of the atmospheric muon flux in the 5-line ANTARES detector. Nucl. Instrum. Methods A 602, 76 (2009). arXiv:0809.0268 [astro-ph] ADSCrossRefGoogle Scholar
  232. 232.
    M. Spurio (ANTARES Collaboration), ANTARES neutrino telescope: status, first results and sensitivity for the diffuse neutrino flux, in 2nd Heidelberg Workshop on High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources. arXiv:0904.3836 [astro-ph]
  233. 233.
    N.N. Kalmykov, S.S. Ostapchenko, A.I. Pavlov, Quark-gluon-string model and EAS simulation problems at ultra-high energies. Nucl. Phys. B, Proc. Suppl. 52B, 17 (1997) ADSCrossRefGoogle Scholar
  234. 234.
    P. Antonioli et al., A three-dimensional code for muon propagation through the rock: MUSIC. Astropart. Phys. 7, 357–368 (1997) ADSCrossRefGoogle Scholar
  235. 235.
    M. Ambrosio et al. (MACRO Collaboration), High-energy cosmic ray physics with the MACRO detector at Gran Sasso: Part 1. Analysis methods and experimental results. Phys. Rev. D 56, 1407 (1997) ADSCrossRefGoogle Scholar
  236. 236.
    M. Ambrosio et al. (MACRO Collaboration), High-energy cosmic ray physics with the MACRO detector at Gran Sasso: Part 2. Primary spectra and composition. Phys. Rev. D 56, 1418 (1997) ADSCrossRefGoogle Scholar
  237. 237.
    M. Ambrosio et al. (MACRO Collaboration), Measurement of the energy spectrum of underground muons at Gran Sasso with a transition radiation detector. Astropart. Phys. 10, 11 (1999) ADSCrossRefGoogle Scholar
  238. 238.
    M. Ambrosio et al. (MACRO Collaboration), Measurement of the residual energy of muons in the Gran Sasso underground laboratories. Astropart. Phys. 19, 313 (2003) ADSCrossRefGoogle Scholar
  239. 239.
    M. Ambrosio et al. (MACRO Collaboration), High statistics measurement of the underground muon pair separation at Gran Sasso. Phys. Rev. D 60, 032001 (1999) ADSCrossRefGoogle Scholar
  240. 240.
    E.V. Bugaev et al., Atmospheric muon flux at sea level, underground, and underwater. Phys. Rev. D 58, 054001 (1998) ADSCrossRefGoogle Scholar
  241. 241.
    J. Horandel, On the knee in the energy spectrum of cosmic rays. Astropart. Phys. 19, 193 (2003) ADSCrossRefGoogle Scholar
  242. 242.
    C. Bigongiari (ANTARES Collaboration), First results of the ANTARES neutrino telescope. J.Phys. Conf. Ser. 173, 012024 (2009) ADSCrossRefGoogle Scholar
  243. 243.
    M. Ambrosio et al. (MACRO Collaboration), Neutrino astronomy with the MACRO detector. Astrophys. J. 546, 1038 (2001) ADSCrossRefGoogle Scholar
  244. 244.
    A. Romeyer, R. Bruijn, J.D. de Zornoza, Muon energy reconstruction in ANTARES and its application to the diffuse neutrino flux, in Proceedings of the 28th International Conference on Cosmic Rays, vol. 3 (2003), pp. 1329–1332 Google Scholar
  245. 245.
    A. Capone et al., Status of the NEMO project. Nucl. Instrum. Methods A 602, 47–53 (2009) ADSCrossRefGoogle Scholar
  246. 246.
    E. Migneco et al., Recent achievements of the NEMO project. Nucl. Instrum. Methods A 588, 111 (2008) ADSCrossRefGoogle Scholar
  247. 247.
    P. Sapienza, Status of simulations in NEMO, Amsterdam (2003). http://www.vlvnt.nl/proceedings
  248. 248.
    A. Capone et al., Measurements of light transmission in deep sea with the AC9 transmissometer. Nucl. Instrum. Methods A 487, 423 (2002) ADSCrossRefGoogle Scholar
  249. 249.
    F. Ameli et al., The data acquisition and transport design for NEMO phase I. IEEE Trans. Nucl. Sci. 55, 233 (2008) ADSCrossRefGoogle Scholar
  250. 250.
    F. Simeone, Data taking system for the NEMO experiment. Nucl. Instrum. Methods A 588, 119 (2008) ADSCrossRefGoogle Scholar
  251. 251.
    I. Amore et al., First results from the NEMO Phase-1 experiment. Nucl. Instrum. Methods A 602, 68–71 (2009) ADSCrossRefGoogle Scholar
  252. 252.
    M. Sedita (NEMO Collaboration), Electro-optical cable and power feeding system for the NEMO Phase-2 project. Nucl. Instrum. Methods A 567, 531 (2006) ADSCrossRefGoogle Scholar
  253. 253.
    E.G. Anassontzis et al., The optical module for the NESTOR neutrino telescope. Nucl. Instrum. Methods A 479, 439 (2002) ADSCrossRefGoogle Scholar
  254. 254.
    G. Aggouras et al., A measurement of the cosmic-ray muon flux with a module of the NESTOR neutrino telescope. Astropart. Phys. 23, 377 (2005) ADSCrossRefGoogle Scholar
  255. 255.
    S. Kuch, Design studies for the KM3NeT Neutrino Telescope. Ph.D. thesis 2007, University of Erlangen, Germany. FAU-PI1-DISS-07-001 Google Scholar
  256. 256.
    J. Carr et al., Configuration studies for a cubic-kilometer deep sea neutrino telescope—KM3NeT—with NESSY, a fast and flexible approach, in Proceedings of 30th Int. Cosmic Ray Conf., Merida, Mexico (July 2007) Google Scholar
  257. 257.
    R.I. Bagduev et al., Nucl. Instrum. Methods A 320, 139 (1999) Google Scholar
  258. 258.
    U. Katz, Status of the KM3NeT project. Nucl. Instrum. Methods A 602, 40–46 (2009) ADSCrossRefGoogle Scholar
  259. 259.
    R. Davis, Nobel Lecture: A half-century with solar neutrinos. Rev. Mod. Phys. 75, 985–994 (2003) ADSCrossRefGoogle Scholar
  260. 260.
    J.N. Bahcall, Neutrino Astrophysics (Cambridge University Press, Cambridge, 1989) Google Scholar
  261. 261.
    J.N. Bahcall, Solar models and solar neutrinos: current status. Phys. Scr. T 121, 46–50 (2005). (Proc. Nobel Symposium 129: Neutrino Physics, arXiv:hep-ph/0412068). doi:10.1088/0031-8949/2005/T121/006, ADSCrossRefGoogle Scholar
  262. 262.
    B.T. Cleveland et al. (Homestake Collaboration), Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 496, 505 (1998) ADSCrossRefGoogle Scholar
  263. 263.
    W. Hampel et al. (GALLEX Collaboration), GALLEX solar neutrino observations: results for GALLEX IV. Phys. Lett. B 447, 127 (1999) ADSCrossRefGoogle Scholar
  264. 264.
    M. Altmann et al. (GNO Collaboration), Complete results for five years of GNO solar neutrino observations. Phys. Lett. B 616, 174 (2005) ADSCrossRefGoogle Scholar
  265. 265.
    J.N. Abdurashitov et al. (SAGE Collaboration), Measurement of the solar neutrino capture rate with Gallium metal, Part III. Phys. Rev. C 80, 015807 (2009). Also: arXiv:0901.2200 ADSCrossRefGoogle Scholar
  266. 266.
    J.P. Cravens et al. (Super-Kamiokande Collaboration), Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D 78, 032002 (2008) ADSCrossRefGoogle Scholar
  267. 267.
    A.B. McDonald, Solar neutrino measurements. New J. Phys. 6, 121 (2004). Also: arXiv:astro-ph/0406253 ADSCrossRefGoogle Scholar
  268. 268.
    B. Aharmim et al. (SNO Collaboration), Determination of the ν e and total 8B solar neutrino fluxes with the Sudbury neutrino observatory phase I data set. Phys. Rev. C 75 045502 (2007) ADSCrossRefGoogle Scholar
  269. 269.
    G. Bellini et al. (BOREXino Collaboration), Measurement of the solar 8B neutrino flux with 246 live days of Borexino and observation of the MSW vacuum-matter transition. arXiv:0808.2868
  270. 270.
    M. Koshiba, Observational neutrino astrophysics. Phys. Rep. 220, 229–381 (1992) ADSCrossRefGoogle Scholar
  271. 271.
    G. Raffelt, Supernova neutrino oscillations. Phys. Scr. T 121, 102–105 (2005). (Proc Nobel Symposium 129: Neutrino Physics, arXiv:hep-ph/0501049). doi:10.1088/0031-8949/2005/T121/014, ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di BolognaBolognaItaly
  2. 2.INFN, Sezione di BolognaBolognaItaly

Personalised recommendations