Advertisement

The European Physical Journal C

, Volume 65, Issue 3–4, pp 607–614 | Cite as

Non-relativistic conformal symmetries in fluid mechanics

  • Pengming Zhang
  • P. A. HorváthyEmail author
Regular Article - Theoretical Physics

Abstract

The symmetries of a free incompressible fluid span the Galilei group, augmented with independent dilations of space and time. When the fluid is compressible, the symmetry is enlarged to the expanded Schrödinger group, which also involves, in addition, Schrödinger expansions. While incompressible fluid dynamics can be derived as an appropriate non-relativistic limit of a conformally invariant relativistic theory, the recently discussed conformal Galilei group, obtained by contraction from the relativistic conformal group, is not a symmetry. This is explained by the subtleties of the non-relativistic limit.

Keywords

Euler Equation High Energy Phys Conformal Group Dynamical Exponent Special Conformal Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Alishahiha, A. Davody, A. Vahedi, On AdS/CFT of Galilean conformal field theories. arXiv:0903.3953 [hep-th]
  2. 2.
    A. Bagchi, R. Gopakumar, Galilean conformal algebras and AdS/CFT. J. High Energy Phys. 0907, 037 (2009). arXiv:0902.1385 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    K. Balasubramanian, J. McGreevy, Gravity duals for non-relativistic CFTs. Phys. Rev. Lett. 101, 061601 (2008) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    J.L.B. Barbon, C.A. Fuertes, On the spectrum of nonrelativistic AdS/CFT. J. High Energy Phys. 0809, 030 (2008) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    A.O. Barut, Conformal group → Schrödinger group → dynamical group—the maximal kinematical group of the massive Schrödinger particle. Helv. Phys. Acta 46, 496 (1973) MathSciNetGoogle Scholar
  6. 6.
    S. Bhattacharyya, S. Minwalla, S.R. Wadia, The incompressible non-relativistic Navier–Stokes equation from gravity. J. High Energy Phys. 0908, 059 (2009). arXiv:0810.1545 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    G. Burdet, M. Perrin, P. Sorba, About the non-relativistic structure of the conformal algebra. Commun. Math. Phys. 34, 85 (1973) zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    R. Cherniha, M. Henkel, The exotic Conformal Galilei Algebra and nonlinear partial differential equations. arXiv:0910.4822 [math-ph]
  9. 9.
    C. Duval, Quelques procédures géométriques en dynamique des particules. Thèse d’Etat, unpublished (1982) Google Scholar
  10. 10.
    C. Duval, Nonrelativistic conformal symmetries and Bargmann structures, in Conformal Groups and Related Symmetries. Physical Results and Mathematical Background, Clausthal, 1985, ed. by A.O. Barut, H.D. Doebner. Lecture Notes in Physics, vol. 261 (Springer, Berlin, 1986), p. 162 CrossRefGoogle Scholar
  11. 11.
    C. Duval, P.A. Horváthy, Spin and exotic Galilean symmetry. Phys. Lett. B 547, 306 (2002). hep-th/0209166 zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    C. Duval, P.A. Horvathy, Non-relativistic conformal symmetries and Newton–Cartan structures. J. Phys. A 42, 465206 (2009). arXiv:0904.0531 CrossRefGoogle Scholar
  13. 13.
    C. Duval, G. Burdet, H.P. Künzle, M. Perrin, Bargmann structures and Newton–Cartan theory. Phys. Rev. D 31, 1841 (1985) CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    C. Duval, G.W. Gibbons, P.A. Horváthy, Celestial mechanics, conformal structures and gravitational waves. Phys. Rev. D 43, 3907 (1991) CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    C. Duval, P.A. Horvathy, L. Palla, Conformal properties of Chern–Simons vortices in external fields. Phys. Rev. D 50, 6658 (1994). hep-ph/9405229 CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    C. Duval, M. Hassaïne, P.A. Horváthy, The geometry of Schrödinger symmetry in non-relativistic CFT. Ann. Phys. (N.Y.) 324, 1158 (2009) zbMATHCrossRefADSGoogle Scholar
  17. 17.
    I. Fouxon, Y. Oz, Conformal field theory as microscopic dynamics of incompressible Euler and Navier–Stokes equations. Phys. Rev. Lett. 101, 261602 (2008). arXiv:0809.4512 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    I. Fouxon, Y. Oz, CFT hydrodynamics symmetries, exact solutions and gravity. J. High Energy Phys. 0903, 120 (2009) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    A.V. Galajinsky, Remark on quantum mechanics with conformal Galilean symmetry. Phys. Rev. D 78, 087701 (2008) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    W.D. Goldberger, AdS/CFT duality for non-relativistic field theory. J. High Energy Phys. 0903, 069 (2009) CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    C.R. Hagen, Scale and conformal transformations in Galilean-covariant field theory. Phys. Rev. D 5, 377 (1972) CrossRefADSGoogle Scholar
  22. 22.
    M. Hassaïne, P. Horvathy, Field-dependent symmetries of a non-relativistic fluid model. Ann. Phys. (N.Y.) 282, 218 (2000). math-ph/9904022 zbMATHCrossRefADSGoogle Scholar
  23. 23.
    M. Hassaïne, P. Horvathy, Symmetries of fluid dynamics with polytropic exponent. Phys. Lett. A 279, 215 (2001). hep-th/0009092 zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    P. Havas, J. Plebański, Conformal extensions of the Galilei group and their relation to the Schrödinger group. J. Math. Phys. 19, 482 (1978) zbMATHCrossRefADSGoogle Scholar
  25. 25.
    M. Henkel, Schrödinger invariance and strongly anisotropic critical systems. J. Stat. Phys. 75, 1023 (1994) zbMATHCrossRefADSGoogle Scholar
  26. 26.
    M. Henkel, Local scale invariance and strongly anisotropic equilibrium critical systems. Phys Rev. Lett. 78, 1940 (1997) CrossRefADSGoogle Scholar
  27. 27.
    M. Henkel, Phenomenology of local scale invariance: from conformal invariance to dynamical scaling. Nucl. Phys. B 641, 405 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    M. Henkel, J. Unterberger, Schroedinger invariance and space-time symmetries. Nucl. Phys. B 660, 407 (2003). arXiv:hep-th/0302187 zbMATHMathSciNetADSGoogle Scholar
  29. 29.
    P.A. Horvathy, P. Zhang, Vortices in (abelian) Chern–Simons gauge theory. Phys. Rep. 481, 83 (2009). Sects. 4.3 and 6.2. arXiv:0811.2094 [hep-th] CrossRefGoogle Scholar
  30. 30.
    A. Hosseiny, S. Rouhani, Affine extension of Galilean conformal algebra in 2+1 dimensions. arXiv:0909.1203 [hep-th]
  31. 31.
    R. Jackiw, Introducing scaling symmetry. Phys. Today 25, 23 (1972) CrossRefGoogle Scholar
  32. 32.
    R. Jackiw, Lectures on Fluid Dynamics. CRM Series in Mathematical Physics (Springer, Berlin, 2002) Google Scholar
  33. 33.
    R. Jackiw, V.P. Nair, Anyon spin and the exotic central extension of the planar Galilei group. Phys. Lett. B 480, 237 (2000). hep-th/0003130 zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    R. Jackiw, V.P. Nair, S.Y. Pi, A.P. Polychronakos, Perfect fluid theory and its extensions. J. Phys. A 37, R327 (2004). arXiv:hep-ph/0407101 zbMATHCrossRefADSGoogle Scholar
  35. 35.
    L. Landau, E. Lifchitz, Mécanique des Fluides, 2nd edn. Physique Théorique, vol. 6 (Mir, Moscow, 1989) Google Scholar
  36. 36.
    C. Leiva, M.S. Plyushchay, Conformal symmetry of relativistic and nonrelativistic systems and AdS/CFT correspondence. Ann. Phys. (N.Y.) 307, 372 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Exotic Galilean conformal symmetry and its dynamical realizations. Phys. Lett. A 357, 1 (2006). arXiv:hep-th/0511259 zbMATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Acceleration-extended Galilean symmetries with central charges and their dynamical realizations. Phys. Lett. B 650, 203 (2007). arXiv:hep-th/0702179 CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant. arXiv:0710.3093 [hep-th]
  40. 40.
    J. Maldacena, D. Martelli, Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry. J. High Energy Phys. 0810, 072 (2008) CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    J. Marsden, A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica D 7, 305 (1983) CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    D. Martelli, Y. Tachikawa, Comments on Galilean conformal field theories and their geometric realization. arXiv:0903.5184 [hep-th]
  43. 43.
    P.J. Morrison, Hamiltonian description of an ideal fluid. Rev. Mod. Phys. 70, 467 (1998) CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    J. Negro, M.A. del Olmo, A. Rodríguez-Marco, Nonrelativistic conformal groups. J. Math. Phys. 38, 3786 (1997) zbMATHCrossRefMathSciNetADSGoogle Scholar
  45. 45.
    J. Negro, M.A. del Olmo, A. Rodríguez-Marco, Nonrelativistic conformal groups. J. Math. Phys. 38, 3810 (1997) zbMATHCrossRefMathSciNetADSGoogle Scholar
  46. 46.
    U. Niederer, The maximal kinematical symmetry group of the free Schrödinger equation. Helv. Phys. Acta 45, 802 (1972) MathSciNetGoogle Scholar
  47. 47.
    L. O’Raifeartaigh, V.V. Sreedhar, The maximal kinematical invariance group of fluid dynamics and explosion–implosion duality. Ann. Phys. 293, 215 (2001) zbMATHCrossRefMathSciNetADSGoogle Scholar
  48. 48.
    D.T. Son, Toward and AdS/cold atom correspondence: a geometric realization of the Schrödinger symmetry. Phys. Rev. D 78, 046003 (2008) CrossRefMathSciNetADSGoogle Scholar
  49. 49.
    P. Stichel, Conformal Galilean-type algebras, massless particles and gravitation. arXiv:0908.1303 [hep-th]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations