The European Physical Journal C

, Volume 65, Issue 3–4, pp 523–536 | Cite as

Standard Model without elementary scalars and high energy Lorentz violation

  • Damiano AnselmiEmail author
Regular Article - Theoretical Physics


If Lorentz symmetry is violated at high energies, interactions that are usually non-renormalizable can become renormalizable by weighted power counting. Recently, a CPT invariant, Lorentz violating extension of the Standard Model containing two scalar-two fermion interactions (which can explain neutrino masses) and four fermion interactions (which can explain proton decay) was proposed. In this paper we consider a variant of this model, obtained suppressing the elementary scalar fields, and argue that it can reproduce the known low-energy physics. In the Nambu–Jona-Lasinio spirit, we show, using a large N c expansion, that a dynamical symmetry breaking takes place. The effective potential has a Lorentz invariant minimum and the Lorentz violation does not reverberate down to low energies. The mechanism generates fermion masses, gauge-boson masses and scalar bound states, to be identified with composite Higgs bosons. Our approach is not plagued by the ambiguities of approaches based on non-renormalizable vertices. The low-energy effective action is uniquely determined and predicts relations among parameters of the Standard Model.


Higgs Boson Gauge Boson Goldstone Boson Power Counting Lorentz Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.A. Kostelecký, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683 (1989) CrossRefADSGoogle Scholar
  2. 2.
    S.M. Carroll, G.B. Field, R. Jackiw, Limits on a Lorentz and parity violating modification of electrodynamics. Phys. Rev. D 41, 1231 (1990) CrossRefADSGoogle Scholar
  3. 3.
    G. Amelino-Camelia, J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763 (1998). arXiv:astro-ph/9712103 CrossRefADSGoogle Scholar
  4. 4.
    S.R. Coleman, G.L. Glashow, High-energy tests of Lorentz invariance. Phys. Rev. D 59, 116008 (1999). arXiv:hep-ph/9812418 CrossRefADSGoogle Scholar
  5. 5.
    O. Bertolami, C.S. Carvalho, Proposed astrophysical test of Lorentz invariance. Phys. Rev. D 61, 103002 (2000). arXiv:gr-qc/9912117 CrossRefADSGoogle Scholar
  6. 6.
    J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, E.K.G. Sarkisyan, Robust limits on Lorentz violation from gamma-ray bursts. Astropart. Phys. 25, 402 (2006). Astropart. Phys. 29 158 (2008) (Erratum). arXiv:astro-ph/0510172 CrossRefADSGoogle Scholar
  7. 7.
    M. Rodriguez Martinez, T. Piran, Constraining Lorentz violations with gamma ray bursts. J. Cosmol. Astropart. Phys. 0604, 006 (2006). arXiv:astro-ph/0601219 CrossRefADSGoogle Scholar
  8. 8.
    D. Colladay, V.A. Kostelecký, Lorentz-violating extension of the Standard Model. Phys. Rev. D 58, 116002 (1998). arXiv:hep-ph/9809521 CrossRefADSGoogle Scholar
  9. 9.
    V.A. Kostelecký (ed.), Proceedings of the Fourth Meeting on CPT and Lorentz Symmetry (World Scientific, Singapore, 2008) Google Scholar
  10. 10.
    V.A. Kostelecký, N. Russell, in Data Tables for Lorentz and CTP Violation (World Scientific, Singapore, 2008), p. 308. arXiv:0801.0287 [hep-ph] Google Scholar
  11. 11.
    R. Jackiw, V.A. Kostelecký, Radiatively induced Lorentz and CPT violation in electrodynamics. Phys. Rev. Lett. 82, 3572 (1999). arXiv:hep-ph/9901358 CrossRefADSGoogle Scholar
  12. 12.
    M. Perez-Victoria, Physical (ir)relevance of ambiguities to Lorentz and CPT violation in QED. J. High Energy Phys. 0104, 032 (2001). arXiv:hep-th/0102021 CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    N.R. Bruno, G. Amelino-Camelia, J. Kowalski-Glikman, Deformed boost transformations that saturate at the Planck scale. Phys. Lett. B 522, 133 (2001). arXiv:hep-th/0107039 zbMATHCrossRefADSGoogle Scholar
  14. 14.
    V.A. Kostelecký, Gravity, Lorentz violation, and the Standard Model. Phys. Rev. D 69, 105009 (2004). arXiv:hep-th/0312310 CrossRefADSGoogle Scholar
  15. 15.
    N. Arkani-Hamed, H.-C. Cheng, M. Luty, J. Thaler, Universal dynamics of spontaneous Lorentz violation and a new spin-dependent inverse-square law force. J. High Energy Phys. 0507, 029 (2005). arXiv:hep-ph/0407034 CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    J. Gamboa, J. Lopez-Sarrion, A.P. Polychronakos, Ultraviolet modified photons and anisotropies in the cosmic microwave background radiation. Phys. Lett. B 634, 471 (2006). arXiv:hep-ph/0510113 CrossRefADSGoogle Scholar
  17. 17.
    A.G. Cohen, S.L. Glashow, Very special relativity. Phys. Rev. Lett. 97, 021601 (2006). arXiv:hep-ph/0601236 CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    A.G. Cohen, S.L. Glashow, A Lorentz-violating origin of the neutrino mass? arXiv:hep-ph/0605036
  19. 19.
    V.A. Kostelecký, M. Mewes, Lorentz and CPT violations in neutrinos. Phys. Rev. D 69, 016005 (2004). arXiv:hep-ph/0309025 CrossRefADSGoogle Scholar
  20. 20.
    F. Klinkhamer, Lorentz-noninvariant neutrino oscillations: models and predictions. Int. J. Mod. Phys. A 21, 161 (2006). arXiv:hep-ph/0407200 CrossRefADSGoogle Scholar
  21. 21.
    D. Anselmi, M. Halat, Renormalization of Lorentz violating theories. Phys. Rev. D 76, 125011 (2007). arXiv:0707.2480 [hep-th] CrossRefADSGoogle Scholar
  22. 22.
    D. Anselmi, Weighted power counting and Lorentz violating gauge theories. I. General properties. Ann. Phys. 324, 874 (2009). arXiv:0808.3470 [hep-th] zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    D. Anselmi, Weighted power counting and Lorentz violating gauge theories. II. Classification. Ann. Phys. 324, 1058 (2009). arXiv:0808.3474 [hep-th] zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    D. Anselmi, Weighted power counting, neutrino masses and Lorentz violating extensions of the Standard Model. Phys. Rev. D 79, 025017 (2009). arXiv:0808.3475 [hep-ph] CrossRefADSGoogle Scholar
  25. 25.
    Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345 (1961) CrossRefADSGoogle Scholar
  26. 26.
    Y. Nambu, in New Frontiers of Physics, ed. by Z. Ajduk, S. Pokorski, A. Trautman. Proceedings of the XI International Symposium on Elementary Particle Physics, Kazimierz, Poland, 1988 (World Scientific, Singapore, 1989) Google Scholar
  27. 27.
    V.A. Miransky, M. Tanabashi, K. Yamawaki, Is the t quark responsible for the mass of W and Z bosons? Mod. Phys. Lett. A 4, 1043 (1989) CrossRefADSGoogle Scholar
  28. 28.
    W.A. Bardeen, C.T. Hill, M. Lindner, Minimal dynamical symmetry breaking of the Standard Model. Phys. Rev. D 41, 1647 (1990) CrossRefADSGoogle Scholar
  29. 29.
    J. Goldstone, Field theories with superconductor solutions. Nuovo Cimento 19, 154 (1961) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    J. Goldstone, S. Weinberg, A. Salam, Broken symmetries. Phys. Rev. 127, 965 (1962) zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    M. Lindner, Top condensates as Higgs substitute. Int. J. Mod. Phys. A 8, 2167 (1993) CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    A. Hasenfratz, P. Hasenfratz, K. Jansen, J. Kuti, Y. Shen, The equivalence of the top quark condensate and the elementary Higgs field. Nucl. Phys. B 365, 79 (1991) CrossRefADSGoogle Scholar
  33. 33.
    E. Farhi, L. Susskind, Technicolour. Phys. Rept. 74, 277 (1981) CrossRefADSGoogle Scholar
  34. 34.
    C.T. Hill, E.H. Simmons, Strong dynamics and electroweak symmetry breaking. Phys. Rept. 381, 235 (2003). Erratum Phys. Rept. 390 (2004) 553 CrossRefADSGoogle Scholar
  35. 35.
    F. Sannino, Dynamical stabilization of the Fermi scale: phase diagram of strongly coupled theories for (minimal) walking technicolor and unparticles. arXiv:0804.0182 [hep-th]
  36. 36.
    The Fermi LAT and Fermi GBM Collaborations, Fermi observations of High-energy gamma-ray emission from GRB 080916C. Science 323, 1688 (2009). DOI: 10.1126/science.1169101 CrossRefADSGoogle Scholar
  37. 37.
    M. Sher, Electroweak Higgs potentials and vacuum stability. Phys. Rept. 179, 273 (1989) CrossRefADSGoogle Scholar
  38. 38.
    S. Iso, N. Okada, Y. Orisaka, Classically conformal BL extended Standard Model. Phys. Lett. B 676, 81 (2009). arXiv:0902.4050 CrossRefADSGoogle Scholar
  39. 39.
    S. Coleman, E. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1988 (1973) ADSGoogle Scholar
  40. 40.
    S. Antusch, J. Kersten, M. Lindner, Dynamical electroweak symmetry breaking by a neutrino condensate. Nucl. Phys. B 658, 203 (2003). arXiv:hep-ph/0211385 CrossRefADSGoogle Scholar
  41. 41.
    P. Sikivie, L. Susskind, M. Voloshin, V. Zakharov, Isospin breaking in technicolor models. Nucl. Phys. B 173, 189 (1980) CrossRefADSGoogle Scholar
  42. 42.
    N. Maekawa, Electroweak symmetry breaking by vector-like fermions’ condensation with small S and T parameters. Phys. Rev. D 52, 1684 (1995) CrossRefADSGoogle Scholar
  43. 43.
    G. Cynolter, E. Lendvai, G. Pócsik, Fermion condensate model of electroweak interactions. Eur. Phys. J. C 46, 545 (2006). arXiv:hep-ph/0509230 CrossRefADSGoogle Scholar
  44. 44.
    G. Cynolter, E. Lendvai, G. Pócsik, S and T parameters in the fermion condensate model. Mod. Phys. Lett. A 24, 2331 (2009). arXiv:0904.1090 [hep-ph] zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Enrico Fermi”Università di PisaPisaItaly
  2. 2.Sezione di PisaINFNPisaItaly

Personalised recommendations