Advertisement

Testing the scale dependence of the scale factor σ eff in double dijet production at the LHC

  • Svend Domdey
  • Hans-Jürgen Pirner
  • Urs Achim WiedemannEmail author
Regular Article - Theoretical Physics

Abstract

The scale factor σ eff is the effective cross section used to characterize the measured rate of inclusive double dijet production in high-energy hadron collisions. It is sensitive to the two-parton distributions in the hadronic projectile. In principle, the scale factor depends on the center of mass energy and on the minimal transverse energy E T,min  of the jets contributing to the double dijet cross section. Here, we point out that proton–proton collisions at the LHC will provide for the first time experimental access to these scale dependences in a logarithmically wide, nominally perturbative kinematic range 10≲E T,min ≲100 GeV. This constrains the dependence of two-parton distribution functions on parton momentum fractions and parton localization in impact parameter space. Novel information is to be expected about the transverse growth of hadronic distribution functions in the range of semi-hard Bjorken x (0.001≲x≲0.1) and high resolution Q 2. We discuss to what extent one can disentangle different pictures of the x-evolution of two-parton distributions in the transverse plane by measuring double-hard scattering events at the LHC.

Keywords

Transverse Momentum High Energy Phys Momentum Fraction Parton Density Dijet Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Goebel, F. Halzen, D.M. Scott, Phys. Rev. D 22, 2789 (1980) CrossRefADSGoogle Scholar
  2. 2.
    N. Paver, D. Treleani, Nuovo Cimento A 70, 215 (1982) CrossRefADSGoogle Scholar
  3. 3.
    F. Halzen, P. Hoyer, W.J. Stirling, Phys. Lett. B 188, 375 (1987) CrossRefADSGoogle Scholar
  4. 4.
    M.L. Mangano, Z. Phys. C 42, 331 (1989) Google Scholar
  5. 5.
    R.M. Godbole, S. Gupta, J. Lindfors, Z. Phys. C 47, 69 (1990) Google Scholar
  6. 6.
    F. Abe et al. (CDF Collaboration), Phys. Rev. D 47, 4857 (1993) CrossRefADSGoogle Scholar
  7. 7.
    F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 79, 584 (1997) CrossRefADSGoogle Scholar
  8. 8.
    F. Abe et al. (CDF Collaboration), Phys. Rev. D 56, 3811 (1997) CrossRefADSGoogle Scholar
  9. 9.
    A. Del Fabbro, D. Treleani, Phys. Rev. D 61, 077502 (2000). arXiv:hep-ph/9911358 CrossRefADSGoogle Scholar
  10. 10.
    E. Maina, J. High Energy Phys. 0904, 098 (2009). arXiv:0904.2682 [hep-ph] CrossRefADSGoogle Scholar
  11. 11.
    T. Sjostrand, M. van Zijl, Phys. Rev. D 36, 2019 (1987) CrossRefADSGoogle Scholar
  12. 12.
    T. Sjostrand, P.Z. Skands, J. High Energy Phys. 0403, 053 (2004). arXiv:hep-ph/0402078 CrossRefADSGoogle Scholar
  13. 13.
    M. Bahr, S. Gieseke, M.H. Seymour, J. High Energy Phys. 0807, 076 (2008). arXiv:0803.3633 [hep-ph] CrossRefADSGoogle Scholar
  14. 14.
    M. Drees, T. Han, Phys. Rev. Lett. 77, 4142 (1996). arXiv:hep-ph/9605430 CrossRefADSGoogle Scholar
  15. 15.
    G. Calucci, D. Treleani, Phys. Rev. D 60, 054023 (1999). arXiv:hep-ph/9902479 CrossRefADSGoogle Scholar
  16. 16.
    L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983) CrossRefADSGoogle Scholar
  17. 17.
    G.P. Salam, Nucl. Phys. B 461, 512 (1996). arXiv:hep-ph/9509353 CrossRefADSGoogle Scholar
  18. 18.
    A. Kovner, U.A. Wiedemann, Phys. Rev. D 66, 034031 (2002). arXiv:hep-ph/0204277 CrossRefADSGoogle Scholar
  19. 19.
    H. Weigert, Prog. Part. Nucl. Phys. 55, 461 (2005). arXiv:hep-ph/0501087 CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    A.I. Shoshi, F.D. Steffen, H.J. Pirner, Nucl. Phys. A 709, 131 (2002). arXiv:hep-ph/0202012 zbMATHCrossRefADSGoogle Scholar
  21. 21.
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195 CrossRefADSGoogle Scholar
  22. 22.
    T. Sjostrand, S. Mrenna, P. Skands, J. High Energy Phys. 0605, 026 (2006). arXiv:hep-ph/0603175 CrossRefADSGoogle Scholar
  23. 23.
    H.J. Pirner, B. Galow, O. Schlaudt, Nucl. Phys. A 819, 135 (2009) CrossRefADSGoogle Scholar
  24. 24.
    M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003). arXiv:hep-ph/0207047 zbMATHCrossRefADSGoogle Scholar
  25. 25.
    A. Del Fabbro, D. Treleani, Phys. Rev. D 63, 057901 (2001). arXiv:hep-ph/0005273 CrossRefADSGoogle Scholar
  26. 26.
    M. Strikman, C. Weiss, arXiv:hep-ph/0408345
  27. 27.
    I. Bender, H.G. Dosch, H.J. Pirner, H.G. Kruse, Nucl. Phys. A 414, 359 (1984) CrossRefADSGoogle Scholar
  28. 28.
    A. Kulesza, W.J. Stirling, Phys. Lett. B 475, 168 (2000). arXiv:hep-ph/9912232 CrossRefADSGoogle Scholar
  29. 29.
    B.Z. Kopeliovich, I.K. Potashnikova, B. Povh, I. Schmidt, Phys. Rev. D 76, 094020 (2007). arXiv:0708.3636 [hep-ph] CrossRefADSGoogle Scholar
  30. 30.
    T. LeCompte, private communication Google Scholar
  31. 31.
    L. Sonnenschein, arXiv:0906.2636 [hep-ex]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  • Svend Domdey
    • 1
    • 2
  • Hans-Jürgen Pirner
    • 1
  • Urs Achim Wiedemann
    • 2
    Email author
  1. 1.Institut für Theoretische PhysikHeidelbergGermany
  2. 2.Department of PhysicsTheory Division, CERNGenève 23Switzerland

Personalised recommendations