Advertisement

On parton distributions in a photon gas

  • I. AlikhanovEmail author
Regular Article - Theoretical Physics

Abstract

A solution to the problem of parton distributions in a gas of photons with blackbody spectrum is proposed. The cosmic microwave background radiation is considered as a particular case. The survival probability of ultra-high energy neutrinos traveling through this radiation is calculated.

PACS

12.38.Bx 95.85.Ry 98.70.Vc 

References

  1. 1.
    R.P. Feynman, Photon–Hadron Interactions (Benjamin, New York, 1972) Google Scholar
  2. 2.
    R. Nisius, Phys. Rep. 332, 165 (2000) CrossRefADSGoogle Scholar
  3. 3.
    M. Krawczyk, M. Staszel, A. Zembrzuski, Phys. Rep. 345, 265 (2001) CrossRefADSGoogle Scholar
  4. 4.
    S.J. Brodsky, T. Kinoshita, H. Terazawa, Phys. Rev. D 4, 1532 (1971) ADSGoogle Scholar
  5. 5.
    T.F. Walsh, P. Zerwas, Nucl. Phys. B 41, 551 (1972) CrossRefADSGoogle Scholar
  6. 6.
    T.F. Walsh, P. Zerwas, Phys. Lett. B 44, 195 (1973) ADSGoogle Scholar
  7. 7.
    R.L. Kingsley, Nucl. Phys. B 60, 45 (1973) CrossRefADSGoogle Scholar
  8. 8.
    E. Witten, Nucl. Phys. B 120, 189 (1977) CrossRefADSGoogle Scholar
  9. 9.
    M. Glück, E. Reya, A. Vogt, Phys. Rev. D 45, 3986 (1992) ADSGoogle Scholar
  10. 10.
    P. Aurenche, M. Fontannaz, J.Ph. Guillet, Eur. Phys. J. C 44, 395 (2005) CrossRefADSGoogle Scholar
  11. 11.
    W. Slominski, H. Abramowicz, A. Levy, Eur. Phys. J. C 45, 633 (2006) CrossRefADSGoogle Scholar
  12. 12.
    D.J. Fixsen et al., Astrophys. J. 473, 576 (1996) CrossRefADSGoogle Scholar
  13. 13.
    K. Greisen, Phys. Rev. Lett. 16, 748 (1966) CrossRefADSGoogle Scholar
  14. 14.
    G.T. Zatsepin, V.A. Kuzmin, Sov. Phys. JETP Lett. 4, 78 (1966) ADSGoogle Scholar
  15. 15.
    P. Bhattacharjee, G. Sigl, Phys. Rep. 327, 109 (2000) CrossRefADSGoogle Scholar
  16. 16.
    I. Alikhanov, Eur. Phys. J. C 56, 479 (2008); Erratum ibid. C 60, 691 (2009) CrossRefADSGoogle Scholar
  17. 17.
    W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics, 2nd edn. (Springer, Berlin, 2002) zbMATHGoogle Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, 3rd edn. (Pergamon, Oxford, 1980) Google Scholar
  19. 19.
    E.C. Titchmarsh, D.R. Heath-Brown, The Theory of the Riemann Zeta-Function, 2nd edn. (Clarendon, Oxford, 1986) zbMATHGoogle Scholar
  20. 20.
    D. Seckel, Phys. Rev. Lett. 80, 900 (1998) CrossRefADSGoogle Scholar
  21. 21.
    P. Gondolo, G. Gelmini, S. Sarkar, Nucl. Phys. B 392, 111 (1993) CrossRefADSGoogle Scholar
  22. 22.
    G. Barenboim, O. Mena Requejo, C. Quigg, Phys. Rev. D 71, 083002 (2005) ADSGoogle Scholar
  23. 23.
    J.C. D’Olivo, L. Nellen, S. Sahu, V. Van Elewyck, Astropart. Phys. 25, 47 (2006) CrossRefADSGoogle Scholar
  24. 24.
    A. Ringwald, L. Schrempp, J. Cosmol. Astropart. Phys. 0610, 012 (2006) CrossRefADSGoogle Scholar
  25. 25.
    F.E. Close, An Introduction to Quarks and Partons (Academic Press, London, 1979) Google Scholar
  26. 26.
    S. Weinberg, Cosmology (Oxford University Press, New York, 2008) zbMATHGoogle Scholar
  27. 27.
    C. Amsler et al., Phys. Lett. B 667, 1 (2008) ADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  1. 1.Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia

Personalised recommendations