Advertisement

Quantum extremism: effective potential and extremal paths

  • E. N. Argyres
  • M. T. M. van KesselEmail author
  • R. H. P. Kleiss
Regular Article - Theoretical Physics

Abstract

The reality and convexity of the effective potential in quantum field theories has been studied extensively in the context of Euclidean space-time. It has been shown that canonical and path-integral approaches may yield different results, thus resolving the convexity problem. We discuss the transferal of these treatments to Minkowskian space-time, which also necessitates a careful discussion of precisely which field configurations give the dominant contributions to the path integral. In particular, we study the effective potential for the N=1 linear sigma model.

Keywords

Effective Potential Convexity Problem Euclidean Case Counter Term Linear Sigma Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, 1995) Google Scholar
  2. 2.
    S. Weinberg, The Quantum Theory of Fields, vol. II (Cambridge University Press, Cambridge, 1996) Google Scholar
  3. 3.
    R.J. Rivers, Path Integral Methods in Quantum Field Theory (Cambridge University Press, Cambridge, 1987) zbMATHGoogle Scholar
  4. 4.
    K. Symanzik, Commun. Math. Phys. 16, 48 (1970) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    J. Iliopoulos, C. Itzykson, A. Martin, Rev. Mod. Phys. 47, 165 (1975) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    R.W. Haymaker, J. Perez-Mercader, Phys. Rev. D 27, 1948 (1983) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    L. O’Raifeartaigh, G. Parravicini, Nucl. Phys. B 111, 516 (1976) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Y. Fujimoto, L. O’Raifeartaigh, G. Parravicini, Nucl. Phys. B 212, 268 (1983) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    D.J.E. Callaway, D.J. Maloof, Phys. Rev. D 27, 406 (1983) CrossRefADSGoogle Scholar
  10. 10.
    C.M. Bender, F. Cooper, Nucl. Phys. B 224, 403 (1983) CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    F. Cooper, B. Freedman, Nucl. Phys. B 239, 459 (1984) CrossRefADSGoogle Scholar
  12. 12.
    M. Hindmarsh, D. Johnston, J. Phys. A 19, 141 (1986) zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    R.J. Rivers, Z. Phys. C 22, 137 (1984) CrossRefADSGoogle Scholar
  14. 14.
    L. O’Raifeartaigh, A. Wipf, H. Yoneyama, Nucl. Phys. B 271, 653 (1986) CrossRefADSGoogle Scholar
  15. 15.
    R. Fukuda, E. Kyriakopoulos, Nucl. Phys. B 85, 354 (1975) CrossRefADSGoogle Scholar
  16. 16.
    A. Ringwald, C. Wetterich, Nucl. Phys. B 334, 506 (1990) CrossRefADSGoogle Scholar
  17. 17.
    V. Branchina, P. Castorina, D. Zappalà, Phys. Rev. D 41, 1948 (1990) CrossRefADSGoogle Scholar
  18. 18.
    E.J. Weinberg, A. Wu, Phys. Rev. D 36, 2474 (1987) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    A. Dannenberg, Phys. Lett. B 202, 110 (1988) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    U.A. Wiedemann, Nucl. Phys. B 406, 808 (1993) zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    E.N. Argyres, M.T.M. van Kessel, R.H.P. Kleiss, Eur. Phys. J. C 64(2), 319–349 (2009) CrossRefGoogle Scholar
  22. 22.
    M.T.M. van Kessel, PhD thesis, 2008. arXiv:0810.1412 [hep-ph]
  23. 23.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals Series and Products (Academic Press, San Diego, 1965) Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  • E. N. Argyres
    • 1
  • M. T. M. van Kessel
    • 2
    Email author
  • R. H. P. Kleiss
    • 2
  1. 1.Institute of Nuclear PhysicsNCSR “Demokritos”AthensGreece
  2. 2.IMAPP, FNWIRadboud Universiteit NijmegenNijmegenThe Netherlands

Personalised recommendations