Advertisement

The European Physical Journal C

, Volume 63, Issue 3, pp 383–390 | Cite as

The SUSY-QCD β function to three loops

  • Robert V. Harlander
  • Luminita Mihaila
  • Matthias SteinhauserEmail author
Regular Article - Theoretical Physics

Abstract

A number of \(\overline {\mbox {\textsc{D}R}}\) renormalization constants in softly broken SUSY- QCD are evaluated to three-loop level: the wave function renormalization constants for quarks, squarks, gluons, gluinos, ghosts, and ε-scalars, and the renormalization constants for the quark and gluino mass as well as for all cubic vertices. The latter allow us to derive the corresponding β functions through three loops, all of which we find to be identical to the expression for the gauge β function obtained by Jack et al. (Phys. Lett. B 386:138, 1996, hep-ph/9606323) (see also Pickering et al. in Phys. Lett. B 510, 347, 2001, hep-ph/0104247). This explicitly demonstrates the consistency of DRED with SUSY and gauge invariance, an important pre-requisite for precision calculations in supersymmetric theories.

Keywords

Anomalous Dimension High Energy Phys Feynman Rule Scalar Coupling Gluino Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Jack, D.R.T. Jones, C.G. North, N=1 supersymmetry and the three loop gauge beta function. Phys. Lett. B 386, 138 (1996). hep-ph/9606323 CrossRefADSGoogle Scholar
  2. 2.
    A.G.M. Pickering, J.A. Gracey, D.R.T. Jones, Three loop gauge beta-function for the most general single gauge-coupling theory. Phys. Lett. B 510, 347 (2001). hep-ph/0104247 zbMATHCrossRefADSGoogle Scholar
  3. 3.
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg–Salam theory. Phys. Rev. D 20, 2619 (1979) CrossRefADSGoogle Scholar
  4. 4.
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum. Phys. Rev. D 19, 1277 (1979) CrossRefADSGoogle Scholar
  5. 5.
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Adv. Study Inst., Ser. B, Phys. 59, 135 (1980) Google Scholar
  6. 6.
    J.R. Ellis, S. Kelley, D.V. Nanopoulos, Probing the desert using gauge coupling unification. Phys. Lett. B 260, 131 (1991) CrossRefADSGoogle Scholar
  7. 7.
    U. Amaldi, W. de Boer, H. Fürstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B 260, 447 (1991) CrossRefADSGoogle Scholar
  8. 8.
    P. Langacker, M.-X. Luo, Implications of precision electroweak experiments for M t, ρ 0, sin 2 θ W and grand unification. Phys. Rev. D 44, 817–822 (1991) CrossRefADSGoogle Scholar
  9. 9.
    H.P. Nilles, Supersymmetry, supergravity and particle physics. Phys. Rep. 110, 1 (1984) CrossRefADSGoogle Scholar
  10. 10.
    R.V. Harlander, L. Mihaila, M. Steinhauser, Running of α s and m b in the MSSM. Phys. Rev. D 76, 055002 (2007). arXiv:0706.2953 [hep-ph] CrossRefADSGoogle Scholar
  11. 11.
    W. Siegel, Supersymmetric dimensional regularization via dimensional reduction. Phys. Lett. B 84, 193 (1979) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    W. Siegel, Inconsistency of supersymmetric dimensional regularization. Phys. Lett. B 94, 37 (1980) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project. Eur. Phys. J. C 46, 43 (2006). hep-ph/0511344 CrossRefADSGoogle Scholar
  14. 14.
    D. Stöckinger, Regularization by dimensional reduction: Consistency quantum action principle, and supersymmetry. J. High Energy Phys. 0503, 076 (2005). hep-ph/0503129 CrossRefADSGoogle Scholar
  15. 15.
    T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four-loop beta function in quantum chromodynamics. Phys. Lett. B 400, 379 (1997). hep-ph/9701390 CrossRefADSGoogle Scholar
  16. 16.
    K.G. Chetyrkin, Quark mass anomalous dimension to \(\mathcal{O}(\alpha_{\mathrm{s}}^{4})\) . Phys. Lett. B 404, 161 (1997). hep-ph/9703278 CrossRefADSGoogle Scholar
  17. 17.
    J.A. Vermaseren, S.A. Larin, T. van Ritbergen, The 4-loop quark mass anomalous dimension and the invariant quark mass. Phys. Lett. B 405, 327 (1997). hep-ph/9703284 CrossRefADSGoogle Scholar
  18. 18.
    M. Czakon, The four-loop QCD beta-function and anomalous dimensions. Nucl. Phys. B 710, 485 (2005). hep-ph/0411261 zbMATHCrossRefADSGoogle Scholar
  19. 19.
    R.V. Harlander, D.R.T. Jones, P. Kant, L. Mihaila, M. Steinhauser, Four-loop beta function and mass anomalous dimension in dimensional reduction. J. High Energy Phys. 0612, 024 (2006). hep-ph/0610206 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Exact Gell-Mann–Low function of supersymmetric Yang–Mills theories from instanton calculus. Nucl. Phys. B 229, 381 (1983) CrossRefADSGoogle Scholar
  21. 21.
    J. Hisano, M.A. Shifman, Exact results for soft supersymmetry breaking parameters in supersymmetric gauge theories. Phys. Rev. D 56, 5475 (1997). hep-ph/9705417 CrossRefADSGoogle Scholar
  22. 22.
    I. Jack, D.R.T. Jones, The gaugino beta-function. Phys. Lett. B 415, 383 (1997). hep-ph/9709364 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    I. Jack, D.R.T. Jones, C.G. North, N=1 supersymmetry and the three loop anomalous dimension for the chiral superfield. Nucl. Phys. B 473, 308 (1996). hep-ph/9603386 zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    L.V. Avdeev, G.A. Chochia, A.A. Vladimirov, On the scope of supersymmetric dimensional regularization. Phys. Lett. B 105, 272 (1981) CrossRefADSGoogle Scholar
  25. 25.
    R.V. Harlander, M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order. J. High Energy Phys. 0409, 066 (2004). hep-ph/0409010 CrossRefADSGoogle Scholar
  26. 26.
    R. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Dimensional reduction applied to QCD at three loops. J. High Energy Phys. 09, 053 (2006). hep-ph/0607240 CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    I. Jack, D.R.T. Jones, P. Kant, L. Mihaila, The four-loop DRED gauge beta-function and fermion mass anomalous dimension for general gauge groups. J. High Energy Phys. 0709, 058 (2007). arXiv:0707.3055 [hep-th] CrossRefADSGoogle Scholar
  28. 28.
    A. Denner, H. Eck, O. Hahn, J. Küblbeck, Compact Feynman rules for Majorana fermions. Phys. Lett. B 291, 278 (1992) CrossRefADSGoogle Scholar
  29. 29.
    A. Denner, H. Eck, O. Hahn, J. Küblbeck, Feynman rules for fermion number violating interactions. Nucl. Phys. B 387, 467 (1992) CrossRefADSGoogle Scholar
  30. 30.
    P. Nogueira, Automatic Feynman graph generation. J. Comput. Phys. 105, 279 (1993) zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    R.V. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Higgs boson mass in supersymmetry to three loops. Phys. Rev. Lett. 100, 191602 (2008) CrossRefADSGoogle Scholar
  32. 32.
    R.V. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Higgs boson mass in supersymmetry to three loops. Phys. Rev. Lett. 101, 039901 (2008). arXiv:0803.0672 [hep-ph] CrossRefADSGoogle Scholar
  33. 33.
    S.A. Larin, F.V. Tkachov, J.A. Vermaseren, The form version of MINCER. NIKHEF-H-91-18 Google Scholar
  34. 34.
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams. hep-ph/9905298
  35. 35.
    R. Harlander, T. Seidensticker, M. Steinhauser, Corrections of \(\mathcal{O}(\alpha \alpha_{\mathrm{s}})\) to the decay of the Z boson into bottom quarks. Phys. Lett. B 426, 125 (1998). hep-ph/9712228 CrossRefADSGoogle Scholar
  36. 36.
    J.A. Vermaseren, New features of FORM. math-ph/0010025
  37. 37.
    T. van Ritbergen, A.N. Schellekens, J.A.M. Vermaseren, Group theory factors for Feynman diagrams. Int. J. Mod. Phys. 14, 41 (1999). hep-ph/9802376 zbMATHCrossRefADSGoogle Scholar
  38. 38.
    M. Steinhauser, Higgs decay into gluons up to \(\mathcal{O}(\alpha_{\mathrm{s}}^{3}G_{F}m_{t}^{2})\) . Phys. Rev. D 59, 054005 (1999). hep-ph/9809507 CrossRefADSGoogle Scholar
  39. 39.
    M. Steinhauser, Results and techniques of multi-loop calculations. Phys. Rep. 364, 247 (2002). hep-ph/0201075 zbMATHCrossRefADSGoogle Scholar
  40. 40.
    A. Bauer, L. Mihaila, J. Salomon, Matching coefficients for α s and m b to \(\mathcal{O}(\alpha_{\mathrm{s}}^{2})\) in the MSSM. J. High Energy Phys. 0902, 037 (2009). arXiv:0810.5101 [hep-ph] CrossRefADSGoogle Scholar
  41. 41.
    V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses. Springer Tracts in Modern Physics, vol. 177 (Springer, Berlin, 2002). ISBN3-540-42334-6 zbMATHGoogle Scholar
  42. 42.

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  • Robert V. Harlander
    • 1
  • Luminita Mihaila
    • 2
  • Matthias Steinhauser
    • 2
    Email author
  1. 1.Fachbereich CBergische Universität WuppertalWuppertalGermany
  2. 2.Institut für Theoretische TeilchenphysikUniversität Karlsruhe, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations