Advertisement

The European Physical Journal C

, Volume 63, Issue 3, pp 491–519 | Cite as

Consistent interactions of dual linearized gravity in D=5: couplings with a topological BF model

  • C. Bizdadea
  • E. M. Cioroianu
  • A. Danehkar
  • M. Iordache
  • S. O. SaliuEmail author
  • S. C. Săraru
Regular Article - Theoretical Physics

Abstract

Under some plausible assumptions, we find that the dual formulation of linearized gravity in D=5 can be nontrivially coupled to the topological BF model in such a way that the interacting theory exhibits a deformed gauge algebra and some deformed, on-shell reducibility relations. Moreover, the tensor field with the mixed symmetry (2,1) gains some shift gauge transformations with parameters from the BF sector.

PACS

11.10.Ef 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Birmingham, M. Blau, M. Rakowski, G. Thompson, Topological field theory. Phys. Rep. 209, 129–340 (1991) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    J.M.F. Labastida, C. Lozano, Lectures on topological quantum field theory, in Proceedings of La Plata-CERN-Santiago de Compostela Meeting on Trends in Theoretical Physics, La Plata, Argentina, April–May 1997, ed. by H. Falomir, R.E. Gamboa Saraví, F.A. Schaposnik. AIP Conference Proceedings, vol. 419 (AIP, New York, 1998), pp. 54–93. arXiv:hep-th/9709192 Google Scholar
  3. 3.
    P. Schaller, T. Strobl, Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129–3136 (1994). arXiv:hep-th/9405110 zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    N. Ikeda, Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994). arXiv:hep-th/9312059 zbMATHCrossRefADSGoogle Scholar
  5. 5.
    A.Yu. Alekseev, P. Schaller, T. Strobl, Topological G/G WZW model in the generalized momentum representation. Phys. Rev. D 52, 7146–7160 (1995). arXiv:hep-th/9505012 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: I. A unifying approach. Class. Quantum Gravity 13, 965–983 (1996). arXiv:gr-qc/9508020; Erratum-ibid. 14, 825 (1997) zbMATHCrossRefADSGoogle Scholar
  7. 7.
    T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions. II: The universal coverings. Class. Quantum Gravity 13, 2395–2421 (1996). arXiv:gr-qc/9511081 zbMATHCrossRefADSGoogle Scholar
  8. 8.
    T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: III. Solutions of arbitrary topology. Class. Quantum Gravity 14, 1689–1723 (1997). arXiv:hep-th/9607226 zbMATHCrossRefADSGoogle Scholar
  9. 9.
    A.S. Cattaneo, G. Felder, A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000). arXiv:math/9902090 zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A.S. Cattaneo, G. Felder, Poisson sigma models and deformation quantization. Mod. Phys. Lett. A 16, 179–189 (2001). arXiv:hep-th/0102208 CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    C. Teitelboim, Gravitation and Hamiltonian structure in two spacetime dimensions. Phys. Lett. B 126, 41–45 (1983) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    R. Jackiw, Lower dimensional gravity. Nucl. Phys. B 252, 343–356 (1985) CrossRefADSGoogle Scholar
  13. 13.
    M.O. Katanayev, I.V. Volovich, String model with dynamical geometry and torsion. Phys. Lett. B 175, 413–416 (1986). arXiv:hep-th/0209014 CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    J. Brown, Lower Dimensional Gravity (World Scientific, Singapore 1988) Google Scholar
  15. 15.
    M.O. Katanaev, I.V. Volovich, Two-dimensional gravity with dynamical torsion and strings. Ann. Phys. 197, 1–32 (1990) zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    H.-J. Schmidt, Scale-invariant gravity in two dimensions. J. Math. Phys. 32, 1562–1566 (1991) zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    S.N. Solodukhin, Topological 2D Riemann–Cartan–Weyl gravity. Class. Quantum Gravity 10, 1011–1021 (1993) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    N. Ikeda, K.I. Izawa, General form of dilaton gravity and nonlinear gauge theory. Prog. Theor. Phys. 90, 237–245 (1993). arXiv:hep-th/9304012 CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    T. Strobl, Dirac quantization of gravity-Yang-Mills systems in 1+1 dimensions. Phys. Rev. D 50, 7346–7350 (1994). arXiv:hep-th/9403121 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    D. Grumiller, W. Kummer, D.V. Vassilevich, Dilaton gravity in two dimensions. Phys. Rep. 369, 327–430 (2002). arXiv:hep-th/0204253 zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    T. Strobl, Gravity in two space-time dimensions. Habilitation thesis RWTH Aachen, May 1999. arXiv:hep-th/0011240
  22. 22.
    K. Ezawa, Ashtekar’s formulation for N=1, 2 supergravities as “constrained” BF theories. Prog. Theor. Phys. 95, 863–882 (1996). arXiv:hep-th/9511047 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    L. Freidel, K. Krasnov, R. Puzio, BF description of higher-dimensional gravity theories. Adv. Theor. Math. Phys. 3, 1289–1324 (1999). arXiv:hep-th/9901069 zbMATHMathSciNetGoogle Scholar
  24. 24.
    L. Smolin, Holographic formulation of quantum general relativity. Phys. Rev. D 61, 084007 (2000). arXiv:hep-th/9808191 CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Y. Ling, L. Smolin, Holographic formulation of quantum supergravity. Phys. Rev. D 63, 064010 (2001). arXiv:hep-th/0009018 CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    K.-I. Izawa, On nonlinear gauge theory from a deformation theory perspective. Prog. Theor. Phys. 103, 225–228 (2000). arXiv:hep-th/9910133 CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    C. Bizdadea, Note on two-dimensional nonlinear gauge theories. Mod. Phys. Lett. A 15, 2047–2055 (2000). arXiv:hep-th/0201059 zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    N. Ikeda, A deformation of three dimensional BF theory. J. High Energy Phys. 11, 009 (2000). arXiv:hep-th/0010096 CrossRefADSGoogle Scholar
  29. 29.
    N. Ikeda, Deformation of BF theories, topological open membrane and a generalization of the star deformation. J. High Energy Phys. 07, 037 (2001). arXiv:hep-th/0105286 CrossRefADSGoogle Scholar
  30. 30.
    C. Bizdadea, E.M. Cioroianu, S.O. Saliu, Hamiltonian cohomological derivation of four-dimensional nonlinear gauge theories. Int. J. Mod. Phys. A 17, 2191–2210 (2002). arXiv:hep-th/0206186 zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Hamiltonian BRST deformation of a class of n-dimensional BF-type theories. J. High Energy Phys. 01, 049 (2003). arXiv:hep-th/0302037 CrossRefADSGoogle Scholar
  32. 32.
    E.M. Cioroianu, S.C. Săraru, Self-interactions in a topological BF-type model in D=5. J. High Energy Phys. 07, 056 (2005). arXiv:hep-th/0508035 CrossRefADSGoogle Scholar
  33. 33.
    E.M. Cioroianu, S.C. Săraru, PT-symmetry breaking Hamiltonian interactions in BF models. Int. J. Mod. Phys. A 21, 2573–2599 (2006). arXiv:hep-th/0606164 zbMATHCrossRefADSGoogle Scholar
  34. 34.
    N. Ikeda, Chern–Simons gauge theory coupled with BF theory. Int. J. Mod. Phys. A 18, 2689–2702 (2003). arXiv:hep-th/0203043 zbMATHCrossRefADSGoogle Scholar
  35. 35.
    E.M. Cioroianu, S.C. Săraru, Two-dimensional interactions between a BF-type theory and a collection of vector fields. Int. J. Mod. Phys. A 19, 4101–4125 (2004). arXiv:hep-th/0501056 zbMATHCrossRefADSGoogle Scholar
  36. 36.
    C. Bizdadea, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Couplings of a collection of BF models to matter theories. Eur. Phys. J. C 41, 401–420 (2005). arXiv:hep-th/0508037 CrossRefADSGoogle Scholar
  37. 37.
    C. Bizdadea, E.M. Cioroianu, I. Negru, S.O. Saliu, S.C. Săraru, On the generalized Freedman-Townsend model. J. High Energy Phys. 10, 004 (2006). arXiv:0704.3407 [hep-th] CrossRefADSGoogle Scholar
  38. 38.
    C. Bizdadea, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, M. Iordache, Four-dimensional couplings among BF and massless Rarita–Schwinger theories: a BRST cohomological approach. Eur. Phys. J. C 58, 123–149 (2008). arXiv:0812.3810 [hep-th] CrossRefADSGoogle Scholar
  39. 39.
    G. Barnich, M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B 311, 123–129 (1993). arXiv:hep-th/9304057 CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    M. Henneaux, Consistent interactions between gauge fields: the cohomological approach. Contemp. Math. 219, 93 (1998). arXiv:hep-th/9712226 MathSciNetGoogle Scholar
  41. 41.
    C. Bizdadea, Consistent interactions in the Hamiltonian BRST formalism. Acta Phys. Pol. B 32, 2843–2862 (2001). arXiv:hep-th/0003199 MathSciNetGoogle Scholar
  42. 42.
    G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism: I. General theorems. Commun. Math. Phys. 174, 57–91 (1995). arXiv:hep-th/9405109 zbMATHCrossRefADSMathSciNetGoogle Scholar
  43. 43.
    G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism: II. Application to Yang-Mills theory. Commun. Math. Phys. 174, 93–116 (1995). arXiv:hep-th/9405194 zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in gauge theories. Phys. Rep. 338, 439–569 (2000). arXiv:hep-th/0002245 zbMATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    N. Ikeda, Topological field theories and geometry of Batalin-Vilkovisky algebras. J. High Energy Phys. 10, 076 (2002). arXiv:hep-th/0209042 CrossRefADSGoogle Scholar
  46. 46.
    N. Ikeda, K.-I. Izawa, Dimensional reduction of nonlinear gauge theories J. High Energy Phys. 09, 030 (2004). arXiv:hep-th/0407243 CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    T. Curtright, P.G.O. Freund, Massive dual fields. Nucl. Phys. B 172, 413–424 (1980) CrossRefADSGoogle Scholar
  48. 48.
    T. Curtright, Generalized gauge fields. Phys. Lett. B 165, 304–308 (1985) CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    C.S. Aulakh, I.G. Koh, S. Ouvry, Higher spin fields with mixed symmetry. Phys. Lett. B 173, 284–288 (1986) CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    J.M. Labastida, T.R. Morris, Massless mixed-symmetry bosonic free fields. Phys. Lett. B 180, 101–106 (1986) CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    J.M. Labastida, Massless particles in arbitrary representations of the Lorentz group. Nucl. Phys. B 322, 185–209 (1989) CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    C. Burdik, A. Pashnev, M. Tsulaia, On the mixed symmetry irreducible representations of the Poincaré group in the BRST approach. Mod. Phys. Lett. A 16, 731–746 (2001). arXiv:hep-th/0101201 zbMATHCrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Yu.M. Zinoviev, On massive mixed symmetry tensor fields in Minkowski space and (A)dS. arXiv:hep-th/0211233
  54. 54.
    C.M. Hull, Duality in gravity and higher spin gauge fields. J. High Energy Phys. 09, 027 (2001). arXiv:hep-th/0107149 CrossRefADSMathSciNetGoogle Scholar
  55. 55.
    X. Bekaert, N. Boulanger, Massless spin-two field S-duality. Class. Quantum Gravity 20, S417–S423 (2003). arXiv:hep-th/0212131 zbMATHCrossRefADSMathSciNetGoogle Scholar
  56. 56.
    X. Bekaert, N. Boulanger, On geometric equations and duality for free higher spins. Phys. Lett. B 561, 183–190 (2003). arXiv:hep-th/0301243 zbMATHCrossRefADSMathSciNetGoogle Scholar
  57. 57.
    H. Casini, R. Montemayor, L.F. Urrutia, Duality for symmetric second rank tensors. II. The linearized gravitational field. Phys. Rev. D 68, 065011 (2003). arXiv:hep-th/0304228 CrossRefADSMathSciNetGoogle Scholar
  58. 58.
    N. Boulanger, S. Cnockaert, M. Henneaux, A note on spin-s duality. J. High Energy Phys. 06, 060 (2003). arXiv:hep-th/0306023 CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    P. de Medeiros, C. Hull, Exotic tensor gauge theory and duality. Commun. Math. Phys. 235, 255–273 (2003). arXiv:hep-th/0208155 zbMATHCrossRefADSGoogle Scholar
  60. 60.
    X. Bekaert, N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D,ℝ). Duality and Poincaré Lemma. Commun. Math. Phys. 245, 27–67 (2004). arXiv:hep-th/0208058 zbMATHCrossRefADSMathSciNetGoogle Scholar
  61. 61.
    X. Bekaert, N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D,ℝ): II. Quadratic actions. Commun. Math. Phys. 271, 723–773 (2007). arXiv:hep-th/0606198 zbMATHCrossRefADSMathSciNetGoogle Scholar
  62. 62.
    X. Bekaert, N. Boulanger, M. Henneaux, Consistent deformations of dual formulations of linearized gravity: A no-go result. Phys. Rev. D 67, 044010 (2003). arXiv:hep-th/0210278 CrossRefADSMathSciNetGoogle Scholar
  63. 63.
    Yu.M. Zinoviev, First order formalism for mixed symmetry tensor fields. arXiv:hep-th/0304067
  64. 64.
    Yu.M. Zinoviev, First order formalism for massive mixed symmetry tensor fields in Minkowski and (A)dS spaces. arXiv:hep-th/0306292
  65. 65.
    N. Boulanger, L. Gualtieri, An exotic theory of massless spin-2 fields in three dimensions. Class. Quantum Gravity 18, 1485–1502 (2001). arXiv:hep-th/0012003 zbMATHCrossRefADSMathSciNetGoogle Scholar
  66. 66.
    S.C. Anco, Parity violating spin-two gauge theories. Phys. Rev. D 67, 124007 (2003). arXiv:gr-qc/0305026 CrossRefADSMathSciNetGoogle Scholar
  67. 67.
    A.K. Bengtsson, I. Bengtsson, L. Brink, Cubic interaction terms for arbitrary spin. Nucl. Phys. B 227, 31–40 (1983) CrossRefADSGoogle Scholar
  68. 68.
    M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS 5. Nucl. Phys. B 616, 106–162 (2001). arXiv:hep-th/0106200; Erratum-ibid. B 652, 407 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  69. 69.
    E. Sezgin, P. Sundell, 7D bosonic higher spin gauge theory: symmetry algebra and linearized constraints. Nucl. Phys. B 634, 120–140 (2002). arXiv:hep-th/0112100 zbMATHCrossRefADSMathSciNetGoogle Scholar
  70. 70.
    D. Francia, A. Sagnotti, Free geometric equations for higher spins. Phys. Lett. B 543, 303–310 (2002). arXiv:hep-th/0207002 zbMATHCrossRefADSMathSciNetGoogle Scholar
  71. 71.
    C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, I. Negru, S.O. Saliu, S.C. Săraru, Interactions of a single massless tensor field with the mixed symmetry (3,1). No-go results. J. High Energy Phys. 10, 019 (2003) CrossRefADSGoogle Scholar
  72. 72.
    N. Boulanger, S. Cnockaert, Consistent deformations of [p,p]-type gauge field theories. J. High Energy Phys. 03, 031 (2004). arXiv:hep-th/0402180 CrossRefADSMathSciNetGoogle Scholar
  73. 73.
    C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, Cohomological BRST aspects of the massless tensor field with the mixed symmetry (k,k). Int. J. Mod. Phys. A 19, 4579–4619 (2004). arXiv:hep-th/0403017 zbMATHCrossRefADSGoogle Scholar
  74. 74.
    C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Interactions of a massless tensor field with the mixed symmetry of the Riemann tensor. No-go results. Eur. Phys. J. C 36, 253–270 (2004). arXiv:hep-th/0306154 CrossRefADSGoogle Scholar
  75. 75.
    X. Bekaert, N. Boulanger, S. Cnockaert, No self-interaction for two-column massless fields. J. Math. Phys. 46, 012303 (2005). arXiv:hep-th/0407102 CrossRefADSMathSciNetGoogle Scholar
  76. 76.
    N. Boulanger, S. Leclercq, S. Cnockaert, Parity-violating vertices for spin-3 gauge fields. Phys. Rev. D 73, 065019 (2006). arXiv:hep-th/0509118 CrossRefADSMathSciNetGoogle Scholar
  77. 77.
    X. Bekaert, N. Boulanger, S. Cnockaert, Spin three gauge theory revisited. J. High Energy Phys. 01, 052 (2006). arXiv:hep-th/0508048 CrossRefADSMathSciNetGoogle Scholar
  78. 78.
    C. Bizdadea, C.C. Ciobîrcă, I. Negru, S.O. Saliu, Couplings between a single massless tensor field with the mixed symmetry (3,1) and one vector field. Phys.Rev. D 74, 045031 (2006). arXiv:0705.1048 [hep-th] CrossRefADSGoogle Scholar
  79. 79.
    C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, Interactions between a massless tensor field with the mixed symmetry of the Riemann tensor and a massless vector field. J. Phys. A: Math. Gen. 39, 10549–10564 (2006). arXiv:0705.1054 [hep-th] zbMATHCrossRefADSGoogle Scholar
  80. 80.
    C. Bizdadea, D. Cornea, S.O. Saliu, No cross-interactions among different tensor fields with the mixed symmetry (3, 1) intermediated by a vector field. J. Phys. A: Math. Theor. 41, 285202 (2008). arXiv:0901.4059 [hep-th] CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  • C. Bizdadea
    • 1
  • E. M. Cioroianu
    • 1
  • A. Danehkar
    • 1
    • 2
  • M. Iordache
    • 1
  • S. O. Saliu
    • 1
    Email author
  • S. C. Săraru
    • 1
  1. 1.Faculty of PhysicsUniversity of CraiovaCraiovaRomania
  2. 2.School of Mathematics and PhysicsQueen’s UniversityBelfastUK

Personalised recommendations