Advertisement

Massive relic gravitational waves from f(R) theories of gravity: production and potential detection

  • Christian CordaEmail author
Regular Article - Theoretical Physics

Abstract

The production of a stochastic background of relic gravitational waves is well known in various works in the literature, where, by using the so called adiabatically-amplified zero-point fluctuations process, it has been shown how the standard inflationary scenario for the early universe can in principle provide a distinctive spectrum of relic gravitational waves. In this paper, it is shown that, in general, f(R) theories of gravity produce a third massive polarization of gravitational waves and the primordial production of this polarization is analyzed adapting the adiabatically-amplified zero-point fluctuations process at this case. In this way, previous results, where only particular cases of f(R) theories have been analyzed, will be generalized.

The presence of the mass could also have important applications in cosmology, because the fact that gravitational waves can have mass could give a contribution to the dark matter of the Universe.

An upper bound for these relic gravitational waves, which arises from the WMAP constrains, is also mentioned.

At the end of the paper, the potential detection of such massive gravitational waves using interferometers like Virgo and LIGO is discussed.

Keywords

Dark Matter Gravitational Wave Ricci Scalar Test Mass Massive Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Acernese et al. (The Virgo Collaboration), Class. Quantum Gravity 24(19), S381–S388 (2007) zbMATHCrossRefADSGoogle Scholar
  2. 2.
    C. Corda, Astropart. Phys. 27(6), 539–549 (2007) ; CrossRefADSGoogle Scholar
  3. 3.
    C. Corda, Int. J. Mod. Phys. D 16(9), 1497–1517 (2007) zbMATHMathSciNetADSGoogle Scholar
  4. 4.
    B. Willke et al., Class. Quantum Gravity 23(8), S207–S214 (2006) CrossRefADSGoogle Scholar
  5. 5.
    D. Sigg (for the LIGO Scientific Collaboration), www.ligo.org/pdf_public/P050036.pdf
  6. 6.
    B. Abbott et al. (The LIGO Scientific Collaboration), Phys. Rev. D 72, 042002 (2005) ADSGoogle Scholar
  7. 7.
    M. Ando (The TAMA Collaboration), Class. Quantum Gravity 19(7), 1615–1621 (2002) CrossRefGoogle Scholar
  8. 8.
    D. Tatsumi, Y. Tsunesada (The TAMA Collaboration), Class. Quantum Gravity 21(5), S451–S456 (2004) CrossRefADSGoogle Scholar
  9. 9.
    C. Corda, J. Cosmol. Astropart. Phys. 4, 009 (2007) Google Scholar
  10. 10.
    C. Corda, Int. J. Mod. Phys. A 23(10), 1521–1535 (2008) zbMATHCrossRefADSGoogle Scholar
  11. 11.
    G. Allemandi, M. Francaviglia, M.L. Ruggiero, A. Tartaglia, Gen. Relativ. Gravit. 37, 11 (2005) CrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Capozziello, C. Corda, Int. J. Mod. Phys. D 15, 1119–1150 (2006) zbMATHADSGoogle Scholar
  13. 13.
    C. Corda, Response of laser interferometers to scalar gravitational waves, in Gravitational Waves Data Analysis Workshop in the General Relativity Trimester of the Institute Henri Poincare, Paris, 13–17 November 2006. On the web in www.luth2.obspm.fr/IHP06/workshops/gwdata/corda.pdf
  14. 14.
    C. Corda, Astropart. Phys. 28, 247–250 (2007) CrossRefADSGoogle Scholar
  15. 15.
    M. Shibata, K. Nakao, T. Nakamura, Phys. Rev. D 50, 7304 (1994) ADSGoogle Scholar
  16. 16.
    M. Maggiore, A. Nicolis, Phys. Rev. D 62, 024004 (2000); also in gr-qc/9907055 ADSGoogle Scholar
  17. 17.
    M.E. Tobar, T. Suzuki, K. Kuroda, Phys. Rev. D 59, 102002 (1999) ADSGoogle Scholar
  18. 18.
    K. Nakao, T. Harada, M. Shibata, S. Kawamura, T. Nakamura, Phys. Rev. D 63, 082001 (2001) ADSGoogle Scholar
  19. 19.
    C. Corda, M.F. De Laurentis, in Proceedings of the 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics—Applications, Villa Olmo, Como, Italy (8–12 October 2007) Google Scholar
  20. 20.
    C. Corda, Mod. Phys. Lett. A 22(16), 1167–1173 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    S. Capozziello, C. Corda, M.F. De Laurentis, Mod. Phys. Lett. A 22(15), 1097–1104 (2007) zbMATHCrossRefADSGoogle Scholar
  22. 22.
    C. Corda, Mod. Phys. Lett. A 22(23), 1727–1735 (2007) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961) zbMATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    N. Bonasia, M. Gasperini, Phys. Rev. D 71, 104020 (2005) ADSGoogle Scholar
  25. 25.
    B. Allen, in Proceedings of the Les Houches School on Astrophysical Sources of Gravitational Waves, ed. by J.-A. Marck, J.-P. Lasota (Cambridge University Press, Cambridge, 1998) Google Scholar
  26. 26.
    B. Allen, Phys. Rev. D 37, 2078 (1988) MathSciNetADSGoogle Scholar
  27. 27.
    L.P. Grishchuk et al., Phys. Uspekhi 44, 1–51 (2001) CrossRefADSGoogle Scholar
  28. 28.
    L.P. Grishchuk et al., Uspekhi Fiz. Nauk 171, 3 (2001) CrossRefGoogle Scholar
  29. 29.
    C. Corda, S. Capozziello, M.F. De Laurentis, in Proceedings of the Fourth Italian-Sino Workshop on Relativistic Astrophysics, 20–30 July 2007, Pescara, Italy. AIP Conference Proceedings, vol. 966 (2007), pp. 257–263 Google Scholar
  30. 30.
    S. Capozziello, C. Corda, M.F. De Laurentis, Mod. Phys. Lett. A 22(35), 2647–2655 (2007) zbMATHCrossRefADSGoogle Scholar
  31. 31.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, New York, 1973) Google Scholar
  32. 32.
    L. Landau, E. Lifsits, Teoria dei Campi, 3 edn. (Editori Riuniti, Rome, 1999) Google Scholar
  33. 33.
    E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004) ADSGoogle Scholar
  34. 34.
    G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, Phys. Rev. D 77, 046009 (2008) ADSGoogle Scholar
  35. 35.
    T. Inagaky, S. Nojiri, S.D. Odintsov, J. Cosmol. Astropart. Phys. 6, 010 (2005) Google Scholar
  36. 36.
    G. Watson, An Exposition on Inflationary Cosmology (North Carolina University Press, Chapel Hill, 2000) Google Scholar
  37. 37.
    A. Guth, Phys. Rev. 23, 347 (1981) ADSGoogle Scholar
  38. 38.
    C.L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1 (2003) CrossRefADSGoogle Scholar
  39. 39.
    D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 195 (2003) CrossRefADSGoogle Scholar
  40. 40.
    C. Corda, Astropart. Phys. 30(4), 209–215 (2008) CrossRefADSGoogle Scholar
  41. 41.
    Private communication with referees Google Scholar
  42. 42.
    M. Fierz, W. Pauli, Proc. R. Soc. A 173, 211 (1939) CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    M. Fierz, W. Pauli, Helv. Phys. Acta 12, 297 (1939) zbMATHGoogle Scholar
  44. 44.
    A.A. Logunov, M.A. Mestvirishvili, Theor. Math. Phys. 65, 971 (1986) CrossRefADSGoogle Scholar
  45. 45.
    S.S. Gershtein, A.A. Logunov, M.A. Mestvirishvili, Phys. At. Nucl. 61, 1420 (1998) Google Scholar
  46. 46.
    A.A. Logunov, M.A. Mestvirishvili, gr-qc/9907021
  47. 47.
    D. Bessada, O. Miranda, Class. Quantum Gravity 26, 045005 (2009); also in 0901.1119 [gr-qc] CrossRefADSGoogle Scholar
  48. 48.
    A.A. Starobinsky, Phys. Lett. B 91, 99 (1980) ADSGoogle Scholar
  49. 49.
    A.A. Starobinsky, JETP Lett. 34, 438 (1982) ADSGoogle Scholar
  50. 50.
    S. Capozziello, M.F. De Laurentis, M. Francaviglia, Astropart. Phys. 2(2), 125–129 (2008) CrossRefADSGoogle Scholar
  51. 51.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115–146 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    T.P. Sotiriou, V. Faraoni, arXiv:0805.1726
  53. 53.
    S. Capozziello, M. Francaviglia, Gen. Relativ. Gravit. 40, 2–3 (2008) MathSciNetGoogle Scholar
  54. 54.
    R.A. Hulse, J.H. Taylor, Astrophys. J. Lett. 195, 151 (1975) CrossRefGoogle Scholar
  55. 55.
    S. Capozziello, C. Corda, M.F. De Laurentis, Phys. Lett. B 669(5), 255–259 (2008) ADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  1. 1.Associazione Galileo GalileiPratoItaly

Personalised recommendations