Advertisement

The European Physical Journal C

, Volume 63, Issue 1, pp 149–155 | Cite as

Circular orbits in cosmic string and Schwarzschild–AdS spacetime with Fermi–Walker transport

  • K. Bakke
  • A. M. de M. Carvalho
  • C. FurtadoEmail author
Regular Article - Theoretical Physics

Abstract

In this paper we discuss the Fermi–Walker transport of vectors along orbits in cosmic string and Schwarzschild–AdS spacetimes. We analyze the influence of acceleration on these holonomies. An effect similar to Thomas precession is observed within the process of Fermi–Walker transport along these circular orbits which are studied in the limit of vanishing cosmological constant in Schwarzschild–AdS case; also we obtain Fermi–Walker transport in a Schwarzschild background. In the case of a Schwarzschild spacetime, we analyze the quantized band holonomy invariance. In the limit of zero acceleration we recover the well-known results for holonomy matrix obtained by parallel transport in all these spacetimes.

PACS

04.20.-q 95.30.Sf 04.90.+e 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Rothman, G. Ellis, J. Murugan, Class. Quantum Gravity 18, 1217 (2001) zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    K. Wilson, Phys. Rev. D 10, 2445 (1964) CrossRefADSGoogle Scholar
  3. 3.
    S. Mandelstam, Ann. Phys. 19, 1 (1962) zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    S. Mandelstam, Phys. Rev. 175, 1580 (1968) CrossRefADSGoogle Scholar
  5. 5.
    A. Ashtekar, Non-Perturbative Canonical Gravity (Singapore, World Scientific, 1990) Google Scholar
  6. 6.
    C.G. Bollini, J.J. Giambiagi, J. Tiomno, Lett. Nuovo Cim. 31(1), 13 (1981) CrossRefADSGoogle Scholar
  7. 7.
    D. Bini, R. Jantzen, B. Mashhoon, Class. Quantum Gravity 19, 17 (2002) zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    C.J.C. Burgers, Phys. Rev. D 32, 02 (1985) Google Scholar
  9. 9.
    V. Bezerra, Phys. Rev. D 35, 06 (1987) CrossRefMathSciNetGoogle Scholar
  10. 10.
    J.G. Assis, C. Furtado, V. Bezerra, F. Moraes, Gravit. Cosmol. 6, 233 (2000) zbMATHADSMathSciNetGoogle Scholar
  11. 11.
    J.G. Assis, C. Furtado, V. Bezerra, Phys. Rev. D 62, 145003 (2000) Google Scholar
  12. 12.
    J. Pachos, P. Zanardi, Int. J. Mod. Phys. B 15, 1257 (2001) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    D. Bini, R.T. Jantzen, Nuovo Cim. B 117, 983 (2003) ADSGoogle Scholar
  14. 14.
    J. Anandan, Phys. Lett. A 195, 284 (1994) zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959) zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    J.L. Synge, Relativity, The General Theory (North-Holland, Amsterdam, 1960) zbMATHGoogle Scholar
  17. 17.
    R. Wald, General Relativity (The University of Chicago Press, Chicago, 1984) zbMATHGoogle Scholar
  18. 18.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973) Google Scholar
  19. 19.
    H. Stephani, Relativity—An Introduction to Special and General Relativity (Cambridge University Press, Cambridge, 2004) Google Scholar
  20. 20.
    A. Vilenkin, Phys. Rev. 23, 851 (1981) Google Scholar
  21. 21.
    W.A. Hiscock, Phys. Rev. 31, 3288 (1985) ADSMathSciNetGoogle Scholar
  22. 22.
    B. Linet, Gen. Relativ. Gravit. 17, 1109 (1985) CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    S. Deser, R. Jackiw, Commun. Math. Phys. 118, 495 (1988) zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Ph. Gerbert, R. Jackiw, Commun. Math. Phys. 124, 229 (1988) CrossRefGoogle Scholar
  25. 25.
    M.O. Katanaev, I.V. Volovich, Ann. Phys. (NY) 216, 1 (1992) zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    C. Furtado, F. Moraes, Phys. Lett. A 188, 392 (1994) CrossRefADSGoogle Scholar
  27. 27.
    D.D. Sokolov, A.A. Starobinsky, Sov. Phys. Dokl. 22, 312 (1977) ADSGoogle Scholar
  28. 28.
    V. Bezerra, Ann. Phys. 203, 392 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) zbMATHADSMathSciNetGoogle Scholar
  30. 30.
    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) zbMATHMathSciNetGoogle Scholar
  31. 31.
    A.M. de M. Carvalho, C. Furtado, F. Moraes, Mod. Phys. Lett. A 19, 36 (2004) Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  1. 1.Departamento de Física, CCENUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de FísicaUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil

Personalised recommendations