Search for narrow resonances lighter than ϒ mesons

Abstract

We report a search for narrow resonances, produced in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\)  TeV, that decay into muon pairs with invariant mass between 6.3 and 9.0 GeV/c 2. The data, collected with the CDF II detector at the Fermilab Tevatron collider, correspond to an integrated luminosity of 630 pb−1. We use the dimuon invariant mass distribution to set 90% upper credible limits of about 1% to the ratio of the production cross section times muonic branching fraction of possible narrow resonances to that of the ϒ(1S) meson.

References

  1. 1.

    D.G. Aschman , Phys. Rev. Lett. 39, 124 (1977)

    Article  ADS  Google Scholar 

  2. 2.

    A.M. Boyarsky , Phys. Rev. Lett. 34, 762 (1975)

    Article  ADS  Google Scholar 

  3. 3.

    R.F. Schwitters, in Proceedings of the XVIII International Conference on High Energy Physics, ed. by N.N. Bogoliubov , Tbilisi, 1976 (JINR, Dubna, 1977)

    Google Scholar 

  4. 4.

    C. Nappi, Phys. Rev. D 25, 84 (1982)

    Article  ADS  Google Scholar 

  5. 5.

    T. Appelquist, H.D. Politzer, Phys. Rev. Lett. 34, 43 (1975)

    Article  ADS  Google Scholar 

  6. 6.

    E. Eichten , Phys. Rev. D 17, 3090 (1978)

    Article  ADS  Google Scholar 

  7. 7.

    G. Apollinari , Phys. Rev. D 72, 092003 (2005)

    Article  ADS  Google Scholar 

  8. 8.

    F. Abe , Nucl. Instrum. Methods Phys. Res., Sect. A 271, 387 (1988)

    Article  ADS  Google Scholar 

  9. 9.

    R. Blair et al., Fermilab Report No. FERMILAB-Pub-96/390-E, 1996

  10. 10.

    C.S. Hill , Nucl. Instrum. Methods Phys. Res., Sect. A 530, 1 (2004)

    Article  ADS  Google Scholar 

  11. 11.

    A. Sill , Nucl. Instrum. Methods Phys. Res., Sect. A 447, 1 (2000)

    Article  ADS  Google Scholar 

  12. 12.

    T. Affolder , Nucl. Instrum. Methods Phys. Res., Sect. A 453, 84 (2000)

    Article  ADS  Google Scholar 

  13. 13.

    T. Affolder , Nucl. Instrum. Methods Phys. Res., Sect. A 526, 249 (2004)

    Article  ADS  Google Scholar 

  14. 14.

    G. Ascoli , Nucl. Instrum. Methods Phys. Res., Sect. A 268, 33 (1988)

    Article  ADS  Google Scholar 

  15. 15.

    J. Elias , Nucl. Instrum. Methods Phys. Res., Sect. A 441, 366 (2000)

    Article  ADS  Google Scholar 

  16. 16.

    D. Acosta , Nucl. Instrum. Methods Phys. Res., Sect. A 461, 540 (2001)

    Article  ADS  Google Scholar 

  17. 17.

    R. Downing , Nucl. Instrum. Methods Phys. Res., Sect. A 570, 36 (2007)

    Article  ADS  Google Scholar 

  18. 18.

    M.M. Block, R.N. Cahn, Rev. Mod. Phys. 57, 563 (1985)

    Article  ADS  Google Scholar 

  19. 19.

    S. Klimenko et al., Fermilab Report No. FERMILAB-FN-0741, 2003

  20. 20.

    D. Acosta , Phys. Rev. D 69, 012002 (2004)

    Article  ADS  Google Scholar 

  21. 21.

    T. Aaltonen , Phys. Rev. D 77, 072004 (2008)

    Article  ADS  Google Scholar 

  22. 22.

    F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    Article  ADS  Google Scholar 

  23. 23.

    D. Acosta , Phys. Rev. Lett. 88, 161802 (2002)

    Article  ADS  Google Scholar 

  24. 24.

    F. Abe , Phys. Rev. Lett. 75, 4358 (1995)

    Article  ADS  Google Scholar 

  25. 25.

    R. Brun et al., CERN Report No. CERN-DD-78-2-REV

  26. 26.

    R. Brun et al., CERN Programming Library Long Write-up W5013, 1993

  27. 27.

    A. Abulencia , Phys. Rev. D 75, 012010 (2007)

    Article  ADS  Google Scholar 

  28. 28.

    D. Acosta , Phys. Rev. Lett. 88, 161802 (2002)

    Article  ADS  Google Scholar 

  29. 29.

    V.M. Abazov , Phys. Rev. Lett. 101, 182004 (2008)

    Article  ADS  Google Scholar 

  30. 30.

    P. Moxhay , Phys. Lett. B 158, 170 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors