Advertisement

The European Physical Journal C

, Volume 62, Issue 2, pp 383–397 | Cite as

Low-lying spectrum of the Y-string three-quark potential using hyper-spherical coordinates

  • V. DmitrašinovićEmail author
  • Toru Sato
  • Milovan Šuvakov
Regular Article - Theoretical Physics

Abstract

We calculate the energies of three-quark states with definite permutation symmetry (i.e. of SU(6) multiplets) in the N=0, 1, 2 shells, confined by the Y-string three-quark potential. The exact Y-string potential consists of one term, the so-called three-string term, and three angle-dependent two-string terms. Due to this technical complication we treat the problem at three increasingly accurate levels of approximation: (1) the (approximate) three-string potential expanded to first order in trigonometric functions of hyper-spherical angles; (2) the (approximate) three-string potential to all orders in the power expansion in hyper-spherical harmonics, but without taking into account the transition(s) to two-string potentials; (3) the exact minimal-length string potential to all orders in a power expansion in the hyper-spherical harmonics, and taking into account the transition(s) to two-string potentials. We show the general trend of improvement of these approximations: the exact non-perturbative corrections to the total energy are of the order of one per cent, as compared with approximation (2), yet the exact energy differences between the [20,1+],[70,2+],[56,2+],[70,0+]-plets are shifted to 2:2:0.9, from the Bowler and Tynemouth separation rule 2:2:1, which is obeyed by approximation (2) at the one per cent level. The precise value of the energy separation of the first radial excitation (“Roper”) [56,0+]-plet from the [70,1]-plet depends on the approximation, but does not become negative, i.e. the “Roper” remains heavier than the odd-parity [70,1]-plet in all of our approximations.

PACS

12.39.Pn 14.20.-c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Artru, Nucl. Phys. B 85, 442 (1975) CrossRefADSGoogle Scholar
  2. 2.
    H.G. Dosch, V. Mueller, Nucl. Phys. B 116, 470 (1976) CrossRefADSGoogle Scholar
  3. 3.
    J. Carlson, J.B. Kogut, V.R. Pandharipande, Phys. Rev. D 27, 233 (1983) CrossRefADSGoogle Scholar
  4. 4.
    J. Carlson, J.B. Kogut, V.R. Pandharipande, Phys. Rev. D 28, 2807 (1983) CrossRefADSGoogle Scholar
  5. 5.
    S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986) CrossRefADSGoogle Scholar
  6. 6.
    W.H. Blask, U. Bohn, M.G. Huber, B.Ch. Metsch, H.R. Petry, Z. Phys. A 337, 327 (1990) Google Scholar
  7. 7.
    Y. Koma, E.-M. Ilgenfritz, T. Suzuki, H. Toki, Phys. Rev. D 64, 014015 (2001) CrossRefADSGoogle Scholar
  8. 8.
    G.S. Bali, Phys. Rep. 343, 1 (2001) zbMATHCrossRefADSGoogle Scholar
  9. 9.
    T.T. Takahashi, H. Matsufuru, Y. Nemoto, H. Suganuma, Phys. Rev. Lett. 86, 18 (2001) CrossRefADSGoogle Scholar
  10. 10.
    T.T. Takahashi, H. Matsufuru, Y. Nemoto, H. Suganuma, Phys. Rev. D 65, 114509 (2002) CrossRefADSGoogle Scholar
  11. 11.
    C. Alexandrou, P. De Forcrand, A. Tsapalis, Phys. Rev. D 65, 054503 (2002) CrossRefADSGoogle Scholar
  12. 12.
    M. Caselle, G. Delfino, P. Grinza, O. Jahn, N. Magnoli, J. Stat. Mech. 0603, P008 (2006). arXiv:hep-th/0511168 Google Scholar
  13. 13.
    Ph. de Forcrand, O. Jahn, Nucl. Phys. A 755, 475 (2005). arXiv:hep-ph/0502039 CrossRefADSGoogle Scholar
  14. 14.
    U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 395 (2001) CrossRefADSGoogle Scholar
  15. 15.
    B. Silvestre-Brac, C. Semay, I.M. Narodetskii, A.I. Veselov, Eur. Phys. J. C 32, 385 (2003) CrossRefADSGoogle Scholar
  16. 16.
    I.M. Narodetskii, M.A. Trusov, hep-ph/0307131
  17. 17.
    M. Šuvakov, V. Dmitrašinović, In preparation (2008) Google Scholar
  18. 18.
    D. Gromes, I.O. Stamatescu, Nucl. Phys. B 112, 213 (1976) CrossRefADSGoogle Scholar
  19. 19.
    D. Gromes, I.O. Stamatescu, Z. Phys. C 3, 43 (1979) CrossRefADSGoogle Scholar
  20. 20.
    N. Isgur, G. Karl, Phys. Rev. D 19, 2653 (1979) CrossRefADSGoogle Scholar
  21. 21.
    Yu.A. Simonov, Sov. J. Nucl. Phys. 3, 461 (1966). Yad. Fiz. 3, 630 (1966) MathSciNetGoogle Scholar
  22. 22.
    K.C. Bowler, B.F. Tynemouth, Phys. Rev. D 27, 662 (1983) CrossRefADSGoogle Scholar
  23. 23.
    K.C. Bowler, P.J. Corvi, A.J.G. Hey, P.D. Jarvis, R.C. King, Phys. Rev. D 24, 197 (1981) CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    J.M. Richard, P. Taxil, Nucl. Phys. B 329, 310 (1990) CrossRefADSGoogle Scholar
  25. 25.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988) Google Scholar
  26. 26.
    D. Faiman, A.W. Hendry, Phys. Rev. 173, 1720 (1968) CrossRefADSGoogle Scholar
  27. 27.
    M. Fabre de la Ripelle, M. Lassaut, Few-Body Syst. 23, 75 (1997) CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    S. Moriguchi, K. Udagawa, S. Hitotsumatsu, Iwanami Suugaku Koushiki III (Iwanami, Tokyo, 1960). (in Japanese). The English translation of Iwanami sugaku jiten, Nihon Sugakkai henshu, is Encyclopedic Dictionary of Mathematics, 2nd edn. (4 vols.). (Cambridge, MIT Press, 1993) Google Scholar
  29. 29.
    R. Krivec, Few Body Syst. 25, 199 (1998) CrossRefADSGoogle Scholar
  30. 30.
    J.M. Richard, Phys. Rep. 212, 1–76 (1992) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  • V. Dmitrašinović
    • 1
    Email author
  • Toru Sato
    • 2
  • Milovan Šuvakov
    • 3
  1. 1.Vinča Institute of Nuclear SciencesPhysics Laboratory 010BelgradeSerbia
  2. 2.Dept. of Physics, Graduate School of ScienceOsaka UniversityToyonakaJapan
  3. 3.Institut J. StefanDept. of Theoretical Physics F-1LjubljanaSlovenia

Personalised recommendations