Advertisement

The European Physical Journal C

, Volume 62, Issue 2, pp 333–353 | Cite as

Renormalization-group improved prediction for Higgs production at hadron colliders

  • Valentin Ahrens
  • Thomas BecherEmail author
  • Matthias Neubert
  • Li Lin Yang
Regular Article - Theoretical Physics

Abstract

We use renormalization-group methods in effective field theory to improve the theoretical prediction for the cross section for Higgs-boson production at hadron colliders. In addition to soft-gluon resummation at N3LL, we also resum enhanced contributions of the form (C A π α s ) n , which arise in the analytic continuation of the gluon form factor to time-like momentum transfer. This resummation is achieved by evaluating the matching corrections arising at the Higgs-boson mass scale at a time-like renormalization point μ 2<0, followed by renormalization-group evolution to μ 2>0. We match our resummed result to NNLO fixed-order perturbation theory and give numerical predictions for the total production cross section as a function of the Higgs-boson mass. Resummation effects are significant even at NNLO, where our improved predictions for the cross sections at the Tevatron and the LHC exceed the fixed-order predictions by about 13% and 8%, respectively, for m H =120 GeV. We also discuss the application of our technique to other time-like processes such as Drell–Yan production, e + e →hadrons, and hadronic decays of the Higgs boson.

Keywords

Higgs Boson Soft Function Hard Function Cusp Anomalous Dimension Gluon Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.M. Georgi, S.L. Glashow, M.E. Machacek, D.V. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978) CrossRefADSGoogle Scholar
  2. 2.
    S. Dawson, Nucl. Phys. B 359, 283 (1991) CrossRefADSGoogle Scholar
  3. 3.
    A. Djouadi, M. Spira, P.M. Zerwas, Phys. Lett. B 264, 440 (1991) CrossRefADSGoogle Scholar
  4. 4.
    R.V. Harlander, W.B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002). arXiv:hep-ph/0201206 CrossRefADSGoogle Scholar
  5. 5.
    C. Anastasiou, K. Melnikov, Nucl. Phys. B 646, 220 (2002). arXiv:hep-ph/0207004 CrossRefADSGoogle Scholar
  6. 6.
    V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 665, 325 (2003). arXiv:hep-ph/0302135 CrossRefADSGoogle Scholar
  7. 7.
    C. Anastasiou, K. Melnikov, F. Petriello, Nucl. Phys. B 724, 197 (2005). arXiv:hep-ph/0501130 zbMATHCrossRefADSGoogle Scholar
  8. 8.
    C. Anastasiou, G. Dissertori, F. Stockli, J. High Energy Phys. 0709, 018 (2007). arXiv:0707.2373 [hep-ph] CrossRefADSGoogle Scholar
  9. 9.
    M. Grazzini, J. High Energy Phys. 0802, 043 (2008). arXiv:0801.3232 [hep-ph] CrossRefADSGoogle Scholar
  10. 10.
    D. Graudenz, M. Spira, P.M. Zerwas, Phys. Rev. Lett. 70, 1372 (1993) CrossRefADSGoogle Scholar
  11. 11.
    M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Nucl. Phys. B 453, 17 (1995). arXiv:hep-ph/9504378 CrossRefADSGoogle Scholar
  12. 12.
    S. Catani, D. de Florian, M. Grazzini, P. Nason, J. High Energy Phys. 0307, 028 (2003). arXiv:hep-ph/0306211 CrossRefADSGoogle Scholar
  13. 13.
    S. Moch, A. Vogt, Phys. Lett. B 631, 48 (2005). arXiv:hep-ph/0508265 CrossRefADSGoogle Scholar
  14. 14.
    E. Laenen, L. Magnea, Phys. Lett. B 632, 270 (2006). arXiv:hep-ph/0508284 CrossRefADSGoogle Scholar
  15. 15.
    A. Idilbi, X.d. Ji, J.P. Ma, F. Yuan, Phys. Rev. D 73, 077501 (2006). arXiv:hep-ph/0509294 CrossRefADSGoogle Scholar
  16. 16.
    V. Ravindran, Nucl. Phys. B 752, 173 (2006). arXiv:hep-ph/0603041 zbMATHCrossRefADSGoogle Scholar
  17. 17.
    A. Idilbi, X.d. Ji, F. Yuan, Nucl. Phys. B 753, 42 (2006). arXiv:hep-ph/0605068 zbMATHCrossRefADSGoogle Scholar
  18. 18.
    V. Ahrens, T. Becher, M. Neubert, L.L. Yang, Phys. Rev. D 79, 033013 (2009). arXiv:0808.3008 [hep-ph] CrossRefADSGoogle Scholar
  19. 19.
    G. Parisi, Phys. Lett. B 90, 295 (1980) CrossRefADSGoogle Scholar
  20. 20.
    L. Magnea, G. Sterman, Phys. Rev. D 42, 4222 (1990) CrossRefADSGoogle Scholar
  21. 21.
    A.P. Bakulev, A.V. Radyushkin, N.G. Stefanis, Phys. Rev. D 62, 113001 (2000). arXiv:hep-ph/0005085 CrossRefADSGoogle Scholar
  22. 22.
    T.O. Eynck, E. Laenen, L. Magnea, J. High Energy Phys. 0306, 057 (2003). arXiv:hep-ph/0305179 CrossRefADSGoogle Scholar
  23. 23.
    A.V. Radyushkin, JINR Rapid Commun. 78, 96 (1996). arXiv:hep-ph/9907228 Google Scholar
  24. 24.
    A.A. Pivovarov, Z. Phys. C 53, 461 (1992) [Sov. J. Nucl. Phys. 54, 676 (1991)]. arXiv:hep-ph/0302003 CrossRefADSGoogle Scholar
  25. 25.
    F. Le Diberder, A. Pich, Phys. Lett. B 286, 147 (1992) CrossRefADSGoogle Scholar
  26. 26.
    T. Becher, M. Neubert, Phys. Rev. Lett. 97, 082001 (2006). arXiv:hep-ph/0605050 CrossRefADSGoogle Scholar
  27. 27.
    T. Becher, M. Neubert, B.D. Pecjak, J. High Energy Phys. 0701, 076 (2007). arXiv:hep-ph/0607228 CrossRefADSGoogle Scholar
  28. 28.
    T. Becher, M. Neubert, G. Xu, J. High Energy Phys. 0807, 030 (2008). arXiv:0710.0680 [hep-ph] CrossRefADSGoogle Scholar
  29. 29.
  30. 30.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, arXiv:0901.0002 [hep-ph]
  31. 31.
    J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B 106, 292 (1976) ADSGoogle Scholar
  32. 32.
    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Sov. J. Nucl. Phys. 30, 711 (1979) [Yad. Fiz. 30, 1368 (1979)] Google Scholar
  33. 33.
    A.I. Vainshtein, V.I. Zakharov, M.A. Shifman, Sov. Phys. Usp. 23, 429 (1980) [Usp. Fiz. Nauk 131, 537 (1980)] CrossRefADSGoogle Scholar
  34. 34.
    T. Inami, T. Kubota, Y. Okada, Z. Phys. C 18, 69 (1983) CrossRefADSGoogle Scholar
  35. 35.
    M.B. Voloshin, Sov. J. Nucl. Phys. 44, 478 (1986) [Yad. Fiz. 44, 738 (1986)] Google Scholar
  36. 36.
    Y. Schroder, M. Steinhauser, J. High Energy Phys. 0601, 051 (2006). arXiv:hep-ph/0512058 CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    K.G. Chetyrkin, J.H. Kuhn, C. Sturm, Nucl. Phys. B 744, 121 (2006). arXiv:hep-ph/0512060 zbMATHCrossRefADSGoogle Scholar
  38. 38.
    M. Kramer, E. Laenen, M. Spira, Nucl. Phys. B 511, 523 (1998). arXiv:hep-ph/9611272 CrossRefADSGoogle Scholar
  39. 39.
    K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 353 (1997). arXiv:hep-ph/9705240 CrossRefADSGoogle Scholar
  40. 40.
    M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998). arXiv:hep-ph/9711391 CrossRefADSGoogle Scholar
  41. 41.
    C.W. Bauer, S. Fleming, D. Pirjol, I.W. Stewart, Phys. Rev. D 63, 114020 (2001). arXiv:hep-ph/0011336 CrossRefADSGoogle Scholar
  42. 42.
    C.W. Bauer, D. Pirjol, I.W. Stewart, Phys. Rev. D 65, 054022 (2002). arXiv:hep-ph/0109045 CrossRefADSGoogle Scholar
  43. 43.
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein, I.W. Stewart, Phys. Rev. D 66, 014017 (2002). arXiv:hep-ph/0202088 CrossRefADSGoogle Scholar
  44. 44.
    M. Beneke, A.P. Chapovsky, M. Diehl, T. Feldmann, Nucl. Phys. B 643, 431 (2002). arXiv:hep-ph/0206152 zbMATHCrossRefADSGoogle Scholar
  45. 45.
    R.J. Hill, M. Neubert, Nucl. Phys. B 657, 229 (2003). arXiv:hep-ph/0211018 zbMATHCrossRefADSGoogle Scholar
  46. 46.
    R.V. Harlander, Phys. Lett. B 492, 74 (2000). arXiv:hep-ph/0007289 CrossRefADSGoogle Scholar
  47. 47.
    B. Grinstein, L. Randall, Phys. Lett. B 217, 335 (1989) CrossRefADSGoogle Scholar
  48. 48.
    A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129 (2004). arXiv:hep-ph/0404111 zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    S. Moch, J.A.M. Vermaseren, A. Vogt, Phys. Lett. B 625, 245 (2005). arXiv:hep-ph/0508055 CrossRefADSGoogle Scholar
  50. 50.
    T. Becher, M. Neubert, Phys. Lett. B 637, 251 (2006). arXiv:hep-ph/0603140 CrossRefADSGoogle Scholar
  51. 51.
    M. Neubert, Eur. Phys. J. C 40, 165 (2005). arXiv:hep-ph/0408179 CrossRefADSGoogle Scholar
  52. 52.
    A.D. Martin, W.J. Stirling, R.S. Thorne, Phys. Lett. B 636, 259 (2006). arXiv:hep-ph/0603143 CrossRefADSGoogle Scholar
  53. 53.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Phys. Lett. B 652, 292 (2007). arXiv:0706.0459 [hep-ph] CrossRefADSGoogle Scholar
  54. 54.
    P.M. Nadolsky , Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 [hep-ph] CrossRefADSGoogle Scholar
  55. 55.
    S. Alekhin, JETP Lett. 82, 628 (2005) [Pisma Zh. Eksp. Teor. Fiz. 82, 710 (2005)]. arXiv:hep-ph/0508248 CrossRefADSGoogle Scholar
  56. 56.
    S. Alekhin, K. Melnikov, F. Petriello, Phys. Rev. D 74, 054033 (2006). arXiv:hep-ph/0606237 CrossRefADSGoogle Scholar
  57. 57.
    T. Kinoshita, J. Math. Phys. 3, 650 (1962) zbMATHCrossRefADSGoogle Scholar
  58. 58.
    S. Catani, D. de Florian, M. Grazzini, J. High Energy Phys. 0201, 015 (2002). arXiv:hep-ph/0111164 CrossRefADSGoogle Scholar
  59. 59.
    C. Anastasiou, K. Melnikov, F. Petriello, Phys. Rev. Lett. 93, 262002 (2004). arXiv:hep-ph/0409088 CrossRefADSGoogle Scholar
  60. 60.
    T.D. Lee, M. Nauenberg, Phys. Rev. 133, B1549 (1964) CrossRefADSMathSciNetGoogle Scholar
  61. 61.
    J.C. Webb et al. (NuSea Collaboration), hep-ex/0302019
  62. 62.
    K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov, Phys. Lett. B 85, 277 (1979) CrossRefADSGoogle Scholar
  63. 63.
    M. Dine, J.R. Sapirstein, Phys. Rev. Lett. 43, 668 (1979) CrossRefADSGoogle Scholar
  64. 64.
    W. Celmaster, R.J. Gonsalves, Phys. Rev. D 21, 3112 (1980) CrossRefADSGoogle Scholar
  65. 65.
    M.R. Pennington, G.G. Ross, Phys. Lett. B 102, 167 (1981) CrossRefADSGoogle Scholar
  66. 66.
    F. Le Diberder, A. Pich, Phys. Lett. B 289, 165 (1992) CrossRefADSGoogle Scholar
  67. 67.
    M. Neubert, Nucl. Phys. B 463, 511 (1996). arXiv:hep-ph/9509432 CrossRefADSGoogle Scholar
  68. 68.
    P.A. Baikov, K.G. Chetyrkin, Phys. Rev. Lett. 97, 061803 (2006). arXiv:hep-ph/0604194 CrossRefADSGoogle Scholar
  69. 69.
    S.J. Brodsky, G.P. Lepage, P.B. Mackenzie, Phys. Rev. D 28, 228 (1983) CrossRefADSGoogle Scholar
  70. 70.
    D.J. Broadhurst, A.L. Kataev, C.J. Maxwell, Nucl. Phys. B 592, 247 (2001). arXiv:hep-ph/0007152 CrossRefADSGoogle Scholar
  71. 71.
    A. Idilbi, X.d. Ji, F. Yuan, Phys. Lett. B 625, 253 (2005). arXiv:hep-ph/0507196 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  • Valentin Ahrens
    • 1
  • Thomas Becher
    • 2
    Email author
  • Matthias Neubert
    • 1
  • Li Lin Yang
    • 1
  1. 1.Institut für Physik (THEP)Johannes Gutenberg-UniversitätMainzGermany
  2. 2.Fermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations