Advertisement

The European Physical Journal C

, Volume 61, Issue 3, pp 527–533 | Cite as

Drag force of moving quark in STU background

  • J. SadeghiEmail author
  • M. R. Setare
  • B. Pourhassan
  • S. Hashmatian
Regular Article - Theoretical Physics

Abstract

In this paper we consider a quark moving in D=5, \({\mathcal{N}}=2\) supergravity thermal plasma. By using the three charges non-extremal black hole solution (STU solution) we calculate the drag force on the quark and the diffusion constant from the AdS/CFT correspondence.

Keywords

Black Hole Gauge Theory Drag Force Wilson Loop Heavy Quark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) zbMATHADSMathSciNetGoogle Scholar
  2. 2.
    E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998) zbMATHMathSciNetGoogle Scholar
  3. 3.
    S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105 (1998) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    J.H. Schwart, Introduction to M Theory and AdS/CFT Duality, Lecture Notes in Physics, vol. 525 (1999). hep-th/9812037
  5. 5.
    M.R. Douglas, S. Randjbar-Daemi, Two lectures on AdS/CFT correspondence. hep-th/9902022
  6. 6.
    J.L. Petersen, Introduction to the Maldacena conjecture on AdS/CFT. Int. J. Mod. Phys. A 14, 3597 (1999) zbMATHCrossRefADSGoogle Scholar
  7. 7.
    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, L.G. Yaffe, Energy loss of a heavy quark moving through \({\mathcal{N}}=4\) supersymmetric Yang–Mills plasma. J. High Energy Phys. 0607, 013 (2006) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    C.P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries. J. High Energy Phys. 0609, 032 (2006) CrossRefADSGoogle Scholar
  9. 9.
    S.S. Gubser, Drag force in AdS/CFT. Phys. Rev. D 74, 126005 (2006) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    E. Nakano, S. Teraguchi, W.Y. Wen, Drag force, jet quenching, and AdS/QCD. Phys. Rev. D 75, 085016 (2007) CrossRefADSGoogle Scholar
  11. 11.
    E. Caceres, A. Guijosa, Drag force in charged \({\mathcal{N}}=4\) SYM plasma. J. High Energy Phys. 0611, 077 (2006) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    T. Matsuo, D. Tomino, W.Y. Wen, Drag force in SYM plasma with B field from AdS/CFT. J. High Energy Phys. 0610, 055 (2006) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J.F. Vazquez-Poritz, Drag force at finite ’t Hooft coupling from AdS/CFT. arXiv:0803.2890 [hep-th]
  14. 14.
    M. Chernicoff, J.A. Garcia, A. Guijosa, The energy of a moving quark-antiquark pair in an \({\mathcal{N}}=4\) SYM plasma. J. High Energy Phys. 0609, 068 (2006) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    K. Peeters, M. Zamaklar, The string/gauge theory correspondence in QCD. Eur. Phys. J. Spec. Top. 152, 113 (2007) CrossRefGoogle Scholar
  16. 16.
    J. Erdmenger, N. Evans, I. Kirsch, E.J. Threlfall, Mesons in gauge/gravity duals. Eur. Phys. J. A 35, 81 (2008) CrossRefADSGoogle Scholar
  17. 17.
    H. Liu, K. Rajagopal, U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT. Phys. Rev. Lett. 97, 182301 (2006) CrossRefADSGoogle Scholar
  18. 18.
    P.C. Argyres, M. Edalati, J.F. Vazquez-Poritz, Spacelike strings and jet quenching from a Wilson loop. J. High Energy Phys. 0704, 049 (2007) CrossRefADSGoogle Scholar
  19. 19.
    P.C. Argyres, M. Edalati, J.F. Vazquez-Poritz, Lightlike Wilson loops from AdS/CFT. J. High Energy Phys. 0803, 071 (2008) CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    A. Buchel, On jet quenching parameters in strongly coupled non-conformal gauge theories. Phys. Rev. D 74, 046006 (2006) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    J.F. Vazquez-Poritz, Enhancing the jet quenching parameter from marginal deformations. hep-th/0605296
  22. 22.
    E. Caceres, A. Guijosa, On drag forces and jet quenching in strongly coupled plasmas. J. High Energy Phys. 0612, 068 (2006) CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    F.L. Lin, T. Matsuo, Jet quenching parameter in medium with chemical potential from AdS/CFT. Phys. Lett. B 641, 45 (2006) CrossRefADSGoogle Scholar
  24. 24.
    S.D. Avramis, K. Sfetsos, Supergravity and the jet quenching parameter in the presence of R-charge densities. J. High Energy Phys. 0701, 065 (2007) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    N. Armesto, J.D. Edelstein, J. Mas, Jet quenching at finite ’t Hooft coupling and chemical potential from AdS/CFT. J. High Energy Phys. 0609, 039 (2006) CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    J.D. Sdelstein, C.A. Salgado, Jet quenching in heavy ion collisions from AdS/CFT. arXiv:0805.4515 [hep-th]
  27. 27.
    K.B. Fadafan, Medium effect and finite t Hooft coupling correction on drag force and jet quenching parameter. arXiv:0809.1336 [hep-th]
  28. 28.
    K. Behrndt, A.H. Chamseddine, W.A. Sabra, BPS black holes in \({\mathcal{N}}=2\) five dimensional AdS supergravity. Phys. Lett. B 442, 97 (1998) zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    K. Behrndt, M. Cvetic, W.A. Sabra, Non-extreme black holes of five dimensional \({\mathcal{N}}=2\) AdS supergravity. Nucl. Phys. B 553, 317 (1999) zbMATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    A.C. Cadavid, A. Ceresole, R. D’Auria, S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau three folds. Phys. Lett. B 357, 76 (1995) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    D.T. Son, A.O. Starinets, Hydrodynamics of R-charged black holes. J. High Energy Phys. 0603, 052 (2006) CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    M. Cvetic, S.S. Gubser, Phases of R-charged black hole, spining branes and strongly coupled gauge theories. J. High Energy Phys. 9904, 024 (1999) CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    J.T. Liu, P. Szepietowski, Higher derivative corrections to R-charged AdS 5 black hole and field redefinitions. arXiv:0806.1026 [hep-th]
  34. 34.
    J. Sadeghi, B. Pourhassan, Drag force of moving quark at the \({\mathcal{N}}=2\) supergravity. J. High Energy Phys. 12, 026 (2008). arXiv:0809.2668 [hep-th] CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    A. Nunez, O. Andrei, Starinets, AdS/CFT correspondence, quasinormal modes, and thermal correlators in N=4 SYM. Phys. Rev. D 67, 124013 (2003) CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    G.T. Horowitz, V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D 62, 024027 (2000) CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    T.R. Govindarajan, V. Suneeta, Quasi-normal modes of AdS black holes: A superpotential approach. Class. Quantum Gravity 18, 265 (2001) zbMATHCrossRefADSMathSciNetGoogle Scholar
  38. 38.
    D. Birmingham, Choptuik scaling and quasinormal modes in the AdS/CFT correspondence. Phys. Rev. D 64, 064024 (2001) CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    D. Birmingham, I. Sachs, S.N. Solodukhin, Conformal field theory interpretation of black hole quasi-normal modes. Phys. Rev. Lett. 88, 151301 (2002) CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    A.O. Starinets, Quasinormal modes of near extremal black branes. Phys. Rev. D 66, 124013 (2002) CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    A. Buchel, J.T. Liu, Universality of the shear viscosity in supergravity. Phys. Rev. Lett. 93, 090602 (2004) CrossRefADSGoogle Scholar
  42. 42.
    K. Meada, M. Natsuume, T. Okamura, Viscosity of gauge theory plasma with a chemical potential from AdS/CFT correspondence. Phys. Rev. D 73, 066013 (2006) CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    J. Mas, Shear viscosity from R-charged AdS black holes. J. High Energy Phys. 0603, 016 (2006) CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    M.T. Grisaru, D. Zanon, Sigma-model superstring corrections to the Einstein–Hilbert action. Phys. Lett. B 177, 347 (1986) CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    M.D. Freeman, C.N. Pope, M.F. Sohnius, K.S. Stelle, Higher-order σ-model counterms and the effective action for superstrings. Phys. Lett. B 178, 199 (1986) CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    D.J. Gross, E. Witten, Superstring modifications of Einstein’s equations. Nucl. Phys. B 277, 1 (1986) CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Q.H. Park, D. Zanon, Phys. Rev. D 35, 4038 (1987) CrossRefADSGoogle Scholar
  48. 48.
    K. Hanaki, K. Ohashi, Y. Tachikawa, Supersymmetric completion of an R 2 term in five-dimensional supergravity. Prog. Theor. Phys. 117, 533 (2007) zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    K.B. Fadafan, R 2 curvature-squared correction on drag force. J. High Energy Phys. 12, 051 (2008). arXiv:0803.2777 [hep-th] CrossRefGoogle Scholar
  50. 50.
    S. Cremonini, K. Hanaki, J.T. Liu, P. Szepietowski, Black holes in five-dimensional gauged supergravity with higher derivatives. arXiv:0812.3572v2 [hep-th]
  51. 51.
    Y. Kats, P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory. arXiv:0712.0743 [hep-th]
  52. 52.
    M. Brigante, H. Liu, R.C. Myers, S. Shenker, S. Yaida, Viscosity bound and causality violation. Phys. Rev. Lett. 100, 191601 (2008) CrossRefADSGoogle Scholar
  53. 53.
    M. Brigante, H. Liu, R.C. Myers, S. Shenker, S. Yaida, Viscosity bound violation in higher derivative gravity. Phys. Rev. D 77, 126006 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  • J. Sadeghi
    • 1
    Email author
  • M. R. Setare
    • 2
  • B. Pourhassan
    • 1
  • S. Hashmatian
    • 1
  1. 1.Sciences Faculty, Department of PhysicsMazandaran UniversityBabolsarIran
  2. 2.Department of SciencePayame Noor UniversityBijarIran

Personalised recommendations