The European Physical Journal C

, Volume 62, Issue 1, pp 63–68 | Cite as

Extracting hadronic viscosity from microscopic transport models

Regular Article - Theoretical Physics

Abstract

Ultrarelativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) are thought to have created a Quark–Gluon Plasma, characterized by a very small shear viscosity to entropy density ratio η/s, close to the lower bound predicted for that quantity by string theory. However, due to the dynamics of the collision, the produced matter passes through a phase characterized by an expanding and rapidly cooling hadron gas with strongly increasing η/s. Such a rise in η/s would not be compatible with the success of (viscous) hydrodynamics, which requires a very small value of η/s throughout the full evolution of the reaction in order to successfully describe the collective flow seen in the experiments. Here we show that the inclusion of a pion-chemical potential, which is bound to arise due to the separation of chemical and kinetic freeze-out during the collision evolution, will reduce the value of η/s, and argue that introduction of other chemical potentials could ensure the successful application of (viscous) hydrodynamics to collisions at RHIC.

PACS

25.75.Nq 51.20.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Adcox (PHENIX). Nucl. Phys. A 757, 184 (2005). nucl-ex/0410003 CrossRefADSGoogle Scholar
  2. 2.
    B.B. Back , Nucl. Phys. A 757, 28 (2005). nucl-ex/0410022 CrossRefADSGoogle Scholar
  3. 3.
    I. Arsene (BRAHMS). Nucl. Phys. A 757, 1 (2005). nucl-ex/0410020 CrossRefADSGoogle Scholar
  4. 4.
    J. Adams (STAR). Nucl. Phys. A 757, 102 (2005). nucl-ex/0501009 CrossRefADSGoogle Scholar
  5. 5.
    P. Danielewicz, M. Gyulassy, Phys. Rev. D 31, 53 (1985) CrossRefADSGoogle Scholar
  6. 6.
    G. Policastro, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 87, 081601 (2001). hep-th/0104066 CrossRefADSGoogle Scholar
  7. 7.
    P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005). hep-th/0405231 CrossRefADSGoogle Scholar
  8. 8.
    H. Song, U.W. Heinz, arXiv:0709.0742 [nucl-th] (2007)
  9. 9.
    P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007). 0706.1522 CrossRefADSGoogle Scholar
  10. 10.
    M. Luzum, P. Romatschke, arXiv:0804.4015 (2008)
  11. 11.
    K. Dusling, D. Teaney, arXiv:0710.5932 [nucl-th] (2007)
  12. 12.
    K. Tsumura, T. Kunihiro, arXiv:0709.3645 [nucl-th] (2007)
  13. 13.
    D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 730, 448 (2004). hep-ph/0212316 CrossRefADSGoogle Scholar
  14. 14.
    L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994). hep-ph/9309289 CrossRefADSGoogle Scholar
  15. 15.
    L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 3352 (1994). hep-ph/9311205 CrossRefADSGoogle Scholar
  16. 16.
    J.W. Chen, M. Huang, Y.H. Li, E. Nakano, D.L. Yang, arXiv:0709.3434 (2007)
  17. 17.
    L.P. Csernai, J.I. Kapusta, L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006). nucl-th/0604032 CrossRefADSGoogle Scholar
  18. 18.
    S.A. Bass, A. Dumitru, Phys. Rev. C 61, 064909 (2000). nucl-th/0001033 CrossRefADSGoogle Scholar
  19. 19.
    T. Hirano, K. Tsuda, Nucl. Phys. A 715, 821 (2003). nucl-th/0208068 CrossRefADSGoogle Scholar
  20. 20.
    P.F. Kolb, R. Rapp, Phys. Rev. C 67, 044903 (2003). hep-ph/0210222 CrossRefADSGoogle Scholar
  21. 21.
    C. Nonaka, S.A. Bass, Phys. Rev. C 75, 014902 (2007). nucl-th/0607018 CrossRefADSGoogle Scholar
  22. 22.
    S. Gavin, Nucl. Phys. A 435, 826 (1985) CrossRefADSGoogle Scholar
  23. 23.
    A. Dobado, S.N. Santalla, Phys. Rev. D 65, 096011 (2002). hep-ph/0112299 CrossRefADSGoogle Scholar
  24. 24.
    M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rep. 227, 321 (1993) CrossRefADSGoogle Scholar
  25. 25.
    J.W. Chen, E. Nakano, Phys. Lett. B 647, 371 (2007). hep-ph/0604138 CrossRefADSGoogle Scholar
  26. 26.
    J.W. Chen, Y.H. Li, Y.F. Liu, E. Nakano, hep-ph/0703230 (2007)
  27. 27.
    K. Itakura, O. Morimatsu, H. Otomo, arXiv:0711.1034 [hep-ph] (2007)
  28. 28.
    M. Belkacem , Phys. Rev. C 58, 1727 (1998). nucl-th/9804058 CrossRefADSGoogle Scholar
  29. 29.
    A. Muronga, Phys. Rev. C 69, 044901 (2004). nucl-th/0309056 CrossRefADSGoogle Scholar
  30. 30.
    S. Muroya, N. Sasaki, Prog. Theor. Phys. 113, 457 (2005). nucl-th/0408055 CrossRefADSGoogle Scholar
  31. 31.
    S.A. Bass , Prog. Part. Nucl. Phys. 41, 225 (1998). nucl-th/9803035 CrossRefADSGoogle Scholar
  32. 32.
    M. Bleicher , J. Phys. G 25, 1859 (1999). hep-ph/9909407 CrossRefADSGoogle Scholar
  33. 33.
    G. Torrieri , Comput. Phys. Commun. 167, 229 (2005). nucl-th/0404083 CrossRefADSGoogle Scholar
  34. 34.
    G. Torrieri, S. Jeon, J. Letessier, J. Rafelski, Comput. Phys. Commun. 175, 635 (2006). nucl-th/0603026 CrossRefADSGoogle Scholar
  35. 35.
    A. Hosoya, M.A. Sakagami, M. Takao, Ann. Phys. 154, 229 (1984) CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    K. Paech, S. Pratt, Phys. Rev. C 74, 014901 (2006). nucl-th/0604008 CrossRefADSGoogle Scholar
  37. 37.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966) CrossRefADSGoogle Scholar
  38. 38.
    P. Arnold, G.D. Moore, L.G. Yaffe, J. High Energy Phys. 05, 051 (2003). hep-ph/0302165 CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001). hep-ph/0105229 CrossRefADSGoogle Scholar
  40. 40.
    P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B 596, 61 (2004). nucl-th/0311005 CrossRefADSGoogle Scholar
  41. 41.
    P.F. Kolb, U.W. Heinz, nucl-th/0305084 (2003)

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  1. 1.Department of PhysicsDuke UniversityDurhamUSA

Personalised recommendations