Advertisement

The European Physical Journal C

, Volume 60, Issue 2, pp 323–344 | Cite as

Finite-temperature Casimir effect in piston geometry and its classical limit

  • S. C. Lim
  • L. P. TeoEmail author
Regular Article - Theoretical Physics

Abstract

We consider the Casimir force acting on a d-dimensional rectangular piston due to a massless scalar field with periodic, Dirichlet and Neumann boundary conditions and an electromagnetic field with perfect electric-conductor and perfect magnetic-conductor boundary conditions. The Casimir energy in a rectangular cavity is derived using the cut-off method. It is shown that the divergent part of the Casimir energy does not contribute to the Casimir force acting on the piston, thus renders an unambiguously defined Casimir force acting on the piston. At any temperature, it is found that the Casimir force acting on the piston increases from −∞ to 0 when the separation a between the piston and the opposite wall increases from 0 to ∞. This implies that the Casimir force is always an attractive force pulling the piston towards the closer wall, and the magnitude of the force gets larger as the separation a gets smaller. Explicit exact expressions for the Casimir force for small and large plate separations and for low and high temperatures are computed. The limits of the Casimir force acting on the piston when some pairs of transversal plates are large are also derived. An interesting result regarding the influence of temperature is that in contrast to the conventional result that the leading term of the Casimir force acting on a wall of a rectangular cavity at high temperature is the Stefan–Boltzmann (or black-body radiation) term which is of order T d+1, it is found that the contributions of this term from the two regions separating the piston cancel with each other in the case of piston. The high-temperature leading-order term of the Casimir force acting on the piston is of order T, which shows that the Casimir force has a nontrivial classical →0 limit. Explicit formulas for the classical limit are computed.

Keywords

Massless Scalar Casimir Force Rectangular Cavity Casimir Energy Divergent Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.B.G. Casimir, On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. B 51, 793–795 (1948) zbMATHGoogle Scholar
  2. 2.
    H.B.G. Casimir, D. Polder, The influence of retardation on the London-van der Waals forces. Phys. Rev. 73(4), 360–372 (1948) zbMATHCrossRefADSGoogle Scholar
  3. 3.
    U. Mohideen, A. Roy, Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett. 81, 4549–4552 (1998) CrossRefGoogle Scholar
  4. 4.
    A. Roy, C.Y. Lin, U. Mohideen, Improved precision measurement of the Casimir force. Phys. Rev. D 60, 111101 (1999) CrossRefADSGoogle Scholar
  5. 5.
    D. Deutsch, P. Candelas, Boundary effects in quantum field theory. Phys. Rev. D 20, 3063–3080 (1979) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    J. Baacke, G. Krüsemann, Perturbative analysis of the divergent contributions to the Casimir energy. Z. Phys. C 30, 413–420 (1986) CrossRefADSGoogle Scholar
  7. 7.
    N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, H. Weigel, Calculating vacuum energies in renormalizable quantum field theories:—A new approach to the Casimir problem. Nucl. Phys. B 645, 49–84 (2002) zbMATHCrossRefADSGoogle Scholar
  8. 8.
    N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, H. Weigel, Casimir energies in light of quantum field theory. Phys. Lett. B 572, 196–201 (2003) zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    R.L. Jaffe, Unnatural acts: unphysical consequences of imposing boundary conditions on quantum fields, in Quantum Field Theory Under the Influence of External Conditions, ed. by K. Milton (Rinton Press, Paramus, 2004) Google Scholar
  10. 10.
    N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, O. Schröder, H. Weigel, The Dirichlet Casimir problem. Nucl. Phys. B 677, 379–404 (2004) zbMATHCrossRefADSGoogle Scholar
  11. 11.
    R.M. Cavalcanti, Casimir force on a piston. Phys. Rev. D 69, 065015 (2004) CrossRefADSGoogle Scholar
  12. 12.
    M.P. Hertzberg, R.L. Jaffe, M. Kardar, A. Scardicchio, Attractive Casimir forces in a closed geometry. Phys. Rev. Lett. 95, 250402 (2005) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M.P. Hertzberg, R.L. Jaffe, M. Kardar, A. Scardicchio, Casimir forces in a piston geometry at zero and finite temperatures. Phys. Rev. D 76, 045016 (2007) CrossRefADSGoogle Scholar
  14. 14.
    V.N. Marachevsky, One loop boundary effects: techniques and applications. arXiv:hep-th/0512221 (2005)
  15. 15.
    V.N. Marachevsky, Casimir energy of two plates inside a cylinder. arXiv:hep-th/0609116 (2006). Published in QUARKS-2006 Proceedings
  16. 16.
    V.N. Marachevsky, Casimir interaction: pistons and cavity. J. Phys. A Math. Theor. 41, 164007 (2008) CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    A. Edery, Casimir piston for a massless scalar fields in three dimensions. Phys. Rev. D 75, 105012 (2007) CrossRefADSGoogle Scholar
  18. 18.
    A. Edery, I. Macdonald, Cancellation of nonrenormalizable hypersurface divergences and the d-dimensional Casimir piston. J. High Energy Phys. 9, 0709005 (2007) ADSGoogle Scholar
  19. 19.
    A. Edery, V.N. Marachevsky, The perfect magnetic conductor (PMC) Casimir piston in d+1 dimensions. Phys. Rev. D 78, 025021 (2008) CrossRefADSGoogle Scholar
  20. 20.
    H. Cheng, The Casimir force on a piston in the spacetime with extra compactified dimensions. arXiv:0801.2810 (2008)
  21. 21.
    O. Kenneth, I. Klich, Opposites attract: A theorem about the Casimir force. Phys. Rev. Lett. 97, 160401 (2006) CrossRefADSGoogle Scholar
  22. 22.
    C.P. Bachas, Comment on the sign of the Casimir force. J. Phys. A 40, 409089 (2007) CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    F.M. Serry, D. Walliser, G.J. Maclay, The anharmonic Casimir oscillator (ACO)-the Casimir effect in amodel microelectromechanical system. J. Microelectromech. Syst. 4, 193–205 (1995) CrossRefGoogle Scholar
  24. 24.
    F.M. Serry, D. Walliser, G.J. Maclay, The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS). J. Appl. Phys. 84, 2501–2506 (1998) CrossRefADSGoogle Scholar
  25. 25.
    G. Barton, Casimir piston and cylinder, perturbatively. Phys. Rev. D 73, 065018 (2006) CrossRefADSGoogle Scholar
  26. 26.
    X.H. Zhai, X.Z. Li, Casimir pistons with hybrid boundary conditions. Phys. Rev. D 76, 047704 (2007) CrossRefADSGoogle Scholar
  27. 27.
    S.A. Fulling, L. Kaplan, J.H. Wilson, Vacuum energy and repulsive Casimir forces in quantum star graphs. Phys. Rev. A 76, 012118 (2007) CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    M. Reuter, W. Dittrich, Regularization schemes for the Casimir effect. Eur. J. Phys. 6, 33–40 (1985) CrossRefGoogle Scholar
  29. 29.
    R. Moazzemi, M. Namdar, S.S. Gousheh, The Dirichlet Casimir effect for φ 4 theory in (3+1) dimensions: A new renormalization approach. J. High Energy Phys. 9, 0709029 (2007) ADSMathSciNetGoogle Scholar
  30. 30.
    S.C. Lim, L.P. Teo, Finite-temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on zeta function technique. J. Phys. A Math. Theor. 40, 11645–11674 (2007) zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    J. Ambjørn, S. Wolfram, Properties of the vacuum. I. Mechanical and thermodynamic. Ann. Phys. 147, 1–32 (1983) CrossRefGoogle Scholar
  32. 32.
    P. Epstein, Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 56, 615–644 (1903) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    P. Epstein, Zur Theorie allgemeiner Zetafunktionen II. Math. Ann. 65, 205–216 (1907) Google Scholar
  34. 34.
    E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994) zbMATHGoogle Scholar
  35. 35.
    E. Elizalde, Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics. New Series m: Monographs, vol. 35 (Springer, Berlin, 1995) zbMATHGoogle Scholar
  36. 36.
    K. Kirsten, Spectral Functions in Mathematics and Physics (Chapman & Hall, London, 2002) zbMATHGoogle Scholar
  37. 37.
    S.A. Fulling, L. Kaplan, K. Kirsten, Z.H. Liu, K.A. Milton, Vacuum stress and closed paths in rectangles, pistons, and pistols. arXiv:0806.2468
  38. 38.
    S. Chowla, A. Selberg, On Epstein’s zeta function. I. Proc. Nat. Acad. Sci. USA 35, 371–374 (1949) zbMATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    A. Selberg, S. Chowla, On Epstein’s zeta-function. J. Reine Angew. Math. 227, 86–110 (1967) zbMATHMathSciNetGoogle Scholar
  40. 40.
    B. Geyer, G.L. Klimchitskaya, V.M. Mostepanenko, Thermal Casimir effect in ideal metal rectangular boxes. arXiv:0808.3754
  41. 41.
    S.C. Lim, L.P. Teo, Casimir piston at zero and finite temperature. arXiv:0808.0047
  42. 42.
    K.A. Milton, The Casimir Effect: Physical Manifestation of Zero-Point Energy (World Scientific, Singapore, 2001) Google Scholar
  43. 43.
    K. Scharnhorst, D. Robaschik, E. Wieczorek, Quantum field theoretic treatment of the Casimir effect at T>0. Real time formalism—free field approximation. Ann. Phys. (Leipz.) 499, 351–360 (1987) CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    D. Robaschik, E. Wieczorek, Fluctuations of the Casimir pressure at finite temperature. Phys. Rev. D 52, 2341–2354 (1995) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2009

Authors and Affiliations

  1. 1.Faculty of EngineeringMultimedia UniversityCyberjayaMalaysia
  2. 2.Faculty of Information TechnologyMultimedia UniversityCyberjayaMalaysia

Personalised recommendations