Advertisement

The European Physical Journal C

, Volume 59, Issue 4, pp 891–898 | Cite as

Fragmentation function in non-equilibrium QCD using closed-time path integral formalism

  • Gouranga C. NayakEmail author
Regular Article - Theoretical Physics

Abstract

In this paper we implement the Schwinger–Keldysh closed-time path integral formalism in non-equilibrium QCD in accordance to the definition of the Collins–Soper fragmentation function. We consider a high-p T parton in QCD medium at initial time τ 0 with an arbitrary non-equilibrium (non-isotropic) distribution function \(f(\vec{p})\) fragmenting to a hadron. We formulate the parton-to-hadron fragmentation function in non-equilibrium QCD in the light-cone quantization formalism. It may be possible to include final-state interactions with the medium via a modification of the Wilson lines in this definition of the non-equilibrium fragmentation function. This may be relevant to the study of hadron production from a quark–gluon plasma at RHIC and LHC.

PACS

12.39.St 13.87.Fh 13.87.Ce 13.85.Ni 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Schwinger, J. Math. Phys. 2, 407 (1961) zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    L.V. Keldysh, J. Exp. Theor. Phys. 20, 1018 (1965) MathSciNetGoogle Scholar
  3. 3.
    F. Cooper, Phys. Rep. 315, 59 (1999). hep-ph/9811246 CrossRefGoogle Scholar
  4. 4.
    C.-W. Kao, G.C. Nayak, W. Greiner, Phys. Rev. D 66, 034017 (2002) CrossRefADSGoogle Scholar
  5. 5.
    F. Cooper, C.-W. Kao, G.C. Nayak, Phys. Rev. D 66, 114016 (2002). hep-ph/0207370 CrossRefADSGoogle Scholar
  6. 6.
    J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981) CrossRefADSGoogle Scholar
  7. 7.
    J.C. Collins, D.E. Soper, Nucl. Phys. B 213, 545 (1983). Erratum CrossRefGoogle Scholar
  8. 8.
    J.C. Collins, D.E. Soper, Nucl. Phys. 194, 445 (1982) CrossRefADSGoogle Scholar
  9. 9.
    B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514–536 (2000) CrossRefADSGoogle Scholar
  10. 10.
    S. Kretzer, Phys. Rev. D 62, 054001 (2000) CrossRefADSGoogle Scholar
  11. 11.
    G. Sterman, Phys. Rev. D 17, 2773 (1978) CrossRefADSGoogle Scholar
  12. 12.
    G. Sterman, Phys. Rev. D 17, 2789 (1978) CrossRefADSGoogle Scholar
  13. 13.
    J.C. Collins, D.E. Soper, G. Sterman, Adv. Ser. Dir. High Energy Phys. 5, 1 (1988) Google Scholar
  14. 14.
    J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 261, 104 (1985) CrossRefADSGoogle Scholar
  15. 15.
    J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 308, 833 (1988) CrossRefADSGoogle Scholar
  16. 16.
    G.T. Bodwin, S.J. Brodsky, G.P. Lepage, Phys. Rev. Lett. 47, 1799 (1981) CrossRefADSGoogle Scholar
  17. 17.
    G.T. Bodwin, Phys. Rev. D 31, 2616 (1985) CrossRefADSGoogle Scholar
  18. 18.
    G.T. Bodwin, Phys. Rev. D 34, 3932 (1986). Erratum CrossRefADSGoogle Scholar
  19. 19.
    R. Tucci, Phys. Rev. D 32, 945 (1985) CrossRefADSGoogle Scholar
  20. 20.
    A.V. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656, 165 (2003) CrossRefADSGoogle Scholar
  21. 21.
    G.C. Nayak, J.-W. Qiu, G. Sterman, Phys. Lett. B 613, 45 (2005) CrossRefADSGoogle Scholar
  22. 22.
    G.C. Nayak, J.-W. Qiu, G. Sterman, Phys. Rev. D 72, 114012 (2005) CrossRefADSGoogle Scholar
  23. 23.
    G.C. Nayak, J.-W. Qiu, G. Sterman, Phys. Rev. D 74, 074007 (2006) CrossRefADSGoogle Scholar
  24. 24.
    G.C. Nayak, J.-W. Qiu, G. Sterman, Phys. Rev. Lett. 99, 212001 (2007) CrossRefADSGoogle Scholar
  25. 25.
    G.C. Nayak, J.-W. Qiu, G. Sterman, Phys. Rev. D 77, 034022 (2008) CrossRefADSGoogle Scholar
  26. 26.
    G.C. Nayak, J.-W. Qiu, G. Sterman, hep-ph/0512345
  27. 27.
    G.C. Nayak, J.-W. Qiu, G. Sterman, AIP Conf. Proc. 842, 610–612 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of IllinoisChicagoUSA

Personalised recommendations