Advertisement

Berry curvature in graphene: a new approach

  • Pierre Gosselin
  • Alain Bérard
  • Hervé Mohrbach
  • Subir GhoshEmail author
Regular Article - Theoretical Physics

Abstract

In the present paper we have directly computed the Berry curvature terms relevant for graphene in the presence of an inhomogeneous lattice distortion. We have employed the generalized Foldy–Wouthuysen framework, developed by some of us. We show that a non-constant lattice distortion leads to a valley–orbit coupling which is responsible for a valley–Hall effect. This is similar to the valley–Hall effect induced by an electric field proposed in the literature and is the analogue of the spin–Hall effect in semiconductors. Our general expressions for Berry curvature, for the special case of homogeneous distortion, reduce to the previously obtained results. We also discuss the Berry phase in the quantization of cyclotron motion.

Keywords

Hall Effect Lattice Distortion Landau Level Orbit Coupling Dirac Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.S. Novoselov et al., Science 306, 666 (2004) CrossRefADSGoogle Scholar
  2. 2.
    V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, arXiv:0706.3016 (2007)
  3. 3.
    G. Semenoff, Phys. Rev. Lett. 53, 2449 (1984) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950) zbMATHCrossRefADSGoogle Scholar
  5. 5.
    A. Berard, H. Mohrbach, Phys. Rev. D 69, 127701 (2004) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A. Berard, H. Mohrbach, Phys. Lett. A 352, 190 (2006) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    P. Gosselin, A. Berard, H. Mohrbach, Phys. Rev. D 75, 084035 (2007) CrossRefADSGoogle Scholar
  8. 8.
    P. Gosselin, A. Berard, H. Mohrbach, Europhys. Lett. 76, 651 (2006) CrossRefADSGoogle Scholar
  9. 9.
    P. Gosselin, A. Berard, H. Mohrbach, Phys. Lett. A 368, 356 (2007) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    P. Gosselin, A. Bérard, H. Mohrbach, Eur. Phys. J. B 58, 137 (2007) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    P. Gosselin, J. Hanssen, H. Mohrbach, Phys. Rev. D 77, 085008 (2008) CrossRefADSGoogle Scholar
  12. 12.
    M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984) zbMATHADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Shapere, F. Wilczek, Geometric Phases in Physics (World Scientific, Singapore, 1989) zbMATHGoogle Scholar
  14. 14.
    D. Xiao, J. Shi, Q. Niu, Phys. Rev. Lett. 95, 137204 (2005) CrossRefADSGoogle Scholar
  15. 15.
    C. Duval, Z. Horvath, P. Horvathy, L. Martina, P. Stichel, Phys. Rev. Lett. 96, 099701 (2006) CrossRefADSGoogle Scholar
  16. 16.
    K.Y. Bliokh, Europhys. Lett. 72, 7 (2005) CrossRefADSGoogle Scholar
  17. 17.
    K.Y. Bliokh, Phys. Lett. A 351, 123 (2006) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    K.Y. Bliokh, Y.P. Bliokh, Ann. Phys. (N.Y.) 319, 13 (2005) CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    W. Greiner, Relativistic Quantum Mechanics (Springer, Berlin, 1990) zbMATHGoogle Scholar
  20. 20.
    H.S. Snyder, Phys. Rev. 71, 68 (1947) CrossRefADSGoogle Scholar
  21. 21.
    H. Longuet-Higgins et al., Proc. R. Soc. A 224, 1 (1958) CrossRefADSGoogle Scholar
  22. 22.
    C. Mead, D. Truhlar, J. Chem. Phys. 70, 2284 (1979) CrossRefADSGoogle Scholar
  23. 23.
    D. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 99, 236809 (2007) CrossRefADSGoogle Scholar
  24. 24.
    M.C. Chang et al., J. Phys.: Condens. Matter 20, 193202 (2008) CrossRefADSGoogle Scholar
  25. 25.
    S. Murakami, N. Nagaosa, S.-C. Zhang, Science 301, 1348 (2003) CrossRefADSGoogle Scholar
  26. 26.
    J. Sinova et al., Phys. Rev. Lett. 92, 126603 (2004) CrossRefADSGoogle Scholar
  27. 27.
    B.A. Bernevig, S.C. Zhang, Phys. Rev. Lett. 96, 106802 (2006) CrossRefADSGoogle Scholar
  28. 28.
    J.N. Fuchs, P. Lederer, Phys. Rev. Lett. 98, 016803 (2007) CrossRefADSGoogle Scholar
  29. 29.
    G.P. Mikitik, Yu.V. Sharlai, Phys. Rev. Lett. 82, 2147 (1999) CrossRefADSGoogle Scholar
  30. 30.
    J.N. Fuchs, G. Montambaux, F. Piéchon, M. Goerbig, Phys. Rev. B 78, 045415 (2008). arXiv:0803.0912 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  • Pierre Gosselin
    • 1
  • Alain Bérard
    • 2
  • Hervé Mohrbach
    • 2
  • Subir Ghosh
    • 3
    Email author
  1. 1.Institut Fourier, UMR 5582 CNRS-UJF, UFR de MathématiquesUniversité Grenoble ISaint Martin d’Hères CedexFrance
  2. 2.Laboratoire de Physique Moléculaire et des Collisions, ICPMB-FR CNRS 2843Université Paul Verlaine-MetzMetz Cedex 3France
  3. 3.Physics and Applied Mathematics UnitIndian Statistical InstituteCalcuttaIndia

Personalised recommendations