Advertisement

The European Physical Journal C

, Volume 59, Issue 3, pp 723–729 | Cite as

Standard model and gravity from spinors

  • Fabrizio NestiEmail author
Regular Article - Theoretical Physics

Abstract

It is shown how the Lorentz and standard-model gauge groups can be unified by using algebraic spinors of the standard four-dimensional Clifford algebra, in left–right symmetric fashion. This defines a framework of unification with gravity and generates exactly a standard-model family of fermions, while a Pati–Salam unification group emerges, at the Planck scale, where (chiral) gravity decouples. We show that this low-energy broken phase emerges from the VEV of extended vierbein fields, which at this stage are assumed to be dynamically generated from a theory in the fully symmetric phase valid beyond the Planck scale (and whose consistency and dynamics is thus yet to be assessed) providing thus a geometrical and group-theoretical framework for the unification and breaking. At low energy, on the other hand, it is intriguing to find, as a remnant of this unification, new isospin-triplet spin-two particles that may naturally lie at the weak scale, providing a striking signal at the LHC.

PACS

04.50.+h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 566 (1975) CrossRefGoogle Scholar
  2. 2.
    J.C. Pati, A. Salam, Phys. Rev. D 10, 275 (1974) CrossRefGoogle Scholar
  3. 3.
    E. Kaehler, Rend. Mat. 21 425 (1962) Google Scholar
  4. 4.
    W. Graf, AIHP XXIX 95 (1978), and references therein Google Scholar
  5. 5.
    P. Woit, Nucl. Phys. B 303, 329 (1988) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    J. Chisolm, R. Farwell, J. Phys. A 20, 6561 (1987) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    W. Baylis, G. Trayling, J. Phys. A 34, 3309 (2001) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    P. Budinich, Found. Phys. 32, 1347 (2002) CrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Pavsic, Phys. Lett. B 614, 85 (2005) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    F. Nesti, R. Percacci, J. Phys. A 41, 075405 (2008). hep-th/0706.3307 CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    C.J. Isham, A. Salam, J. Strathdee, Lett. Nuovo Cim. 5, 969 (1972) CrossRefMathSciNetGoogle Scholar
  12. 12.
    A.H. Chamseddine, Phys. Rev. D 69, 024015 (2004) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    A.H. Chamseddine, Phys. Rev. D 70, 084006 (2004) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    G. Senjanovic, R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975) CrossRefGoogle Scholar
  15. 15.
    Z. Berezhiani, D. Comelli, F. Nesti, L. Pilo, Phys. Rev. Lett. 99, 131101 (2007) CrossRefADSGoogle Scholar
  16. 16.
    P. Peldan, Nucl. Phys. B 430, 460 (1994) zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    F. Nesti, in preparation Google Scholar
  18. 18.
    J.E. Plebanski, J. Math. Phys. 12, 2511 (1977) CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    L. Smolin, hep-th/0712.0977
  20. 20.
    A. Ashtekar, Phys. Rev. D 36, 1587 (1987) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    S. Chakraborty, P. Peldan, Phys. Rev. Lett. 73, 1195 (1994) zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.University of L’Aquila & INFN–LNGSL’AquilaItaly

Personalised recommendations