Advertisement

The European Physical Journal C

, Volume 59, Issue 1, pp 67–73 | Cite as

The phase diagram of hadronic matter

  • P. Castorina
  • K. Redlich
  • H. SatzEmail author
Regular Article - Theoretical Physics

Abstract

We interpret the phase structure of hadronic matter in terms of the basic dynamical and geometrical features of hadrons. Increasing the density of constituents of finite spatial extension, by increasing the temperature T or the baryochemical potential μ, eventually “fills the box” and eliminates the physical vacuum. We determine the corresponding transition as a function of T and μ through percolation theory. At low baryon density, this means a fusion of overlapping mesonic bags to one large bag, while at high baryon density, hard-core repulsion restricts the spatial mobility of baryons. As a consequence, there are two distinct limiting regimes for hadronic matter. We compare our results to those from effective chiral model studies.

Keywords

Hard Core Baryon Density Polyakov Loop Hadronic Matter Physical Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Karsch, J. Phys. Conf. Ser. 46, 122 (2006) CrossRefADSGoogle Scholar
  2. 2.
    Z. Fodor, S. Katz, J. High Energy Phys. 0203, 014 (2002) CrossRefADSGoogle Scholar
  3. 3.
    P. de Forcrand, O. Philipsen, Nucl. Phys. B 642, 290 (2002) zbMATHCrossRefADSGoogle Scholar
  4. 4.
    M.-P. Lombardo, Phys. Rev. D 67, 014505 (2003) CrossRefADSGoogle Scholar
  5. 5.
    C.R. Allton et al., Phys. Rev. D 68, 014507 (2003) CrossRefADSGoogle Scholar
  6. 6.
    C. Miau, C. Schmidt, PoS, 175 (LATTICE 2007) Google Scholar
  7. 7.
    M.A. Stephanov, Phys. Rev. Lett. 76, 4472 (1996) CrossRefADSGoogle Scholar
  8. 8.
    M. Halasz et al., Phys. Rev. D 58, 096007 (1998) CrossRefADSGoogle Scholar
  9. 9.
    M.A. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998) CrossRefADSGoogle Scholar
  10. 10.
    T.M. Schwarz, S.P. Klevansky, G. Papp, Phys. Rev. C 60, 055205 (1999) CrossRefADSGoogle Scholar
  11. 11.
    M. Buballa, Phys. Rep. 407, 205 (2003) CrossRefADSGoogle Scholar
  12. 12.
    C. Sasaki, B. Friman, K. Redlich, Phys. Rev. D 75, 074013 (2007) CrossRefADSGoogle Scholar
  13. 13.
    P.N. Meisinger, M.C. Ogilvie, Phys. Lett. B 379, 163 (1996) CrossRefADSGoogle Scholar
  14. 14.
    K. Fukushima, Phys. Lett. B 591, 277 (2004) CrossRefADSGoogle Scholar
  15. 15.
    C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006) CrossRefADSGoogle Scholar
  16. 16.
    F. Karsch, H. Satz, Phys. Rev. D 21, 1168 (1980) CrossRefADSGoogle Scholar
  17. 17.
    M.B. Isichenko, Rev. Mod. Phys. 64, 961 (1992) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    K.W. Kratky, J. Stat. Phys. 52, 1413 (1988) zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    J. Cleymans et al., Z. Phys. C 33, 151 (1986) CrossRefADSGoogle Scholar
  20. 20.
    J. Cleymans, R.V. Gavai, E. Suhonen, Phys. Rep. 130, 217 (1986) CrossRefADSGoogle Scholar
  21. 21.
    D.H. Rischke et al., Z. Phys. C 51, 488 (1991) CrossRefGoogle Scholar
  22. 22.
    G.D. Yen et al., Phys. Rev. C 56, 2210 (1997) CrossRefADSGoogle Scholar
  23. 23.
    G.Y. Onoda, E.G. Liniger, Phys. Rev. Lett. 22, 2727 (1990) CrossRefADSGoogle Scholar
  24. 24.
    E. Beth, G.E. Uhlenbeck, Physica 4, 915 (1937) CrossRefADSGoogle Scholar
  25. 25.
    R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965) Google Scholar
  26. 26.
    R. Hagedorn, Nuovo Cimento 56A, 1027 (1968) ADSGoogle Scholar
  27. 27.
    P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark Gluon Plasma 3, ed. by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2003), p. 491 Google Scholar
  28. 28.
    F. Karsch, K. Redlich, A. Tawfik, Phys. Lett. B 571, 67 (2003) zbMATHCrossRefADSGoogle Scholar
  29. 29.
    J. Baacke, Acta Phys. Pol. B 8, 625 (1977) Google Scholar
  30. 30.
    I.Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR 78, 889 (1951) Google Scholar
  31. 31.
    H. Satz, Nucl. Phys. A 642, 130c (1998) CrossRefADSGoogle Scholar
  32. 32.
    S. Fortunato, H. Satz, Phys. Lett. B 509, 189 (2001) zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    C.M. Fortuin, P.W. Kasteleyn, J. Phys. Soc. Jpn. (Suppl.) 26, 11 (1969) ADSGoogle Scholar
  34. 34.
    C.M. Fortuin, P.W. Kasteleyn, Physica 57, 536 (1972) CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    A. Coniglio, W. Klein, J. Phys. A 13, 2775 (1980) CrossRefADSGoogle Scholar
  36. 36.
    Ph. Blanchard et al., J. Phys. A 41, 085001 (2008) CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    S. Fortunato, H. Satz, Phys. Lett. B 475, 311 (2000) zbMATHCrossRefADSMathSciNetGoogle Scholar
  38. 38.
    B. Svetitsky, L.G. Yaffe, Nucl. Phys. B 210(FS6), 423 (1982) CrossRefADSGoogle Scholar
  39. 39.
    M. Iwasaki, arXiv:hep-ph/0411199
  40. 40.
    H. Abuki et al., arXiv:0805.1509v2 [hep-ph]
  41. 41.
    G. Baym et al., Phys. Rev. D 76, 074001 (2007) CrossRefADSGoogle Scholar
  42. 42.
    L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Catania, and INFN Sezione di CataniaCataniaItaly
  2. 2.Institute of Theoretical PhysicsUniversity of WrocławWrocławPoland
  3. 3.Technische Universität DarmstadtDarmstadtGermany
  4. 4.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations