Advertisement

The European Physical Journal C

, Volume 58, Issue 2, pp 291–300 | Cite as

Squarks and gluinos at a TeV e + e collider: testing the identity of Yukawa and gauge couplings in SUSY-QCD

  • A. Brandenburg
  • M. ManiatisEmail author
  • M. M. Weber
  • P. M. Zerwas
Regular Article - Theoretical Physics

Abstract

Supersymmetry predicts the identity of Yukawa and gauge couplings in the QCD sector: \(q\tilde{q}\tilde{g}=\tilde{q}\tilde{q}g=qqg\) . We examine whether the \(q{\tilde {q}}{\tilde {g}}\)  Yukawa coupling can be determined, by methods complementary to LHC, by analyzing squark–gluino final states at a TeV e + e collider.

Keywords

Yukawa Coupling Gauge Coupling Born Approximation Supersymmetric Particle Gluino Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Fayet, Phys. Lett. B 69, 489 (1977) CrossRefADSGoogle Scholar
  2. 2.
    S. Dimopoulos, H. Georgi, Nucl. Phys. B 193, 150 (1981) CrossRefADSGoogle Scholar
  3. 3.
    N. Sakai, Z. Phys. C 11, 153 (1981) CrossRefADSGoogle Scholar
  4. 4.
    A. Freitas, P.Z. Skands, JHEP 0609, 043 (2006). arXiv:hep-ph/0606121 CrossRefADSGoogle Scholar
  5. 5.
    A. Freitas, P.Z. Skands, M. Spira, P.M. Zerwas, JHEP 0707, 025 (2007). arXiv:hep-ph/0703160 CrossRefADSGoogle Scholar
  6. 6.
    J.A. Aguilar-Saavedra et al. (ECFA/DESY LC Physics Working Group), Physics at an e + e Linear Collider (2001). arXiv:hep-ph/0106315
  7. 7.
    A. Djouadi et al., Physics at the ILC (2007). arXiv:0709.1893 [hep-ph]
  8. 8.
    E. Accomando et al. (CLIC Physics Working Group), Physics at the CLIC multi-TeV linear collider (2004). arXiv:hep-ph/0412251
  9. 9.
    J.R. Ellis, S. Heinemeyer, K.A. Olive, A.M. Weber, G. Weiglein, JHEP 0708, 083 (2007). arXiv:0706.0652 [hep-ph] CrossRefADSGoogle Scholar
  10. 10.
    S.Y. Choi, J. Kalinowski, G.A. Moortgat-Pick, P.M. Zerwas, Eur. Phys. J. C 22, 563 (2001). arXiv:hep-ph/0108117 CrossRefADSGoogle Scholar
  11. 11.
    S.Y. Choi, J. Kalinowski, G.A. Moortgat-Pick, P.M. Zerwas, Eur. Phys. J. C 23, 769 (2002). arXiv:hep-ph/0202039 CrossRefGoogle Scholar
  12. 12.
    A. Freitas, A. von Manteuffel, P.M. Zerwas, Eur. Phys. J. C 34, 487 (2004). arXiv:hep-ph/0310182 CrossRefADSGoogle Scholar
  13. 13.
    S. Berge, M. Klasen, Phys. Rev. D 66, 115014 (2002). arXiv:hep-ph/0208212 CrossRefADSGoogle Scholar
  14. 14.
    A. Brandenburg, M. Maniatis, M.M. Weber, SUSY02, Hamburg, 2002. arXiv:hep-ph/0207278
  15. 15.
    G. Weiglein et al. (LHC/LC Study Group), Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364 CrossRefADSGoogle Scholar
  16. 16.
    S.Y. Choi, K. Hagiwara, H.U. Martyn, K. Mawatari, P.M. Zerwas, Eur. Phys. J. C 51, 753 (2007). arXiv:hep-ph/0612301 CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    B.C. Allanach et al., in Proceedings, APS/DPF/DPB Summer Study on the Future of Particle Physics, Snowmass, 2001 Google Scholar
  18. 18.
    B.C. Allanach et al., Eur. Phys. J. C 25 113 (2002). arXiv:hep-ph/0202233 CrossRefADSGoogle Scholar
  19. 19.
    T. Affolder et al. (CDF Collaboration), Phys. Rev. Lett. 88, 041801 (2002). arXiv:hep-ex/0106001 CrossRefADSGoogle Scholar
  20. 20.
    W. Beenakker, R. Hopker, P.M. Zerwas, Phys. Lett. B 378, 159 (1996). arXiv:hep-ph/9602378 CrossRefADSGoogle Scholar
  21. 21.
    W. Hollik, D. Stockinger, Eur. Phys. J. C 20, 105 (2001). arXiv:hep-ph/0103009 CrossRefADSGoogle Scholar
  22. 22.
    S.P. Martin, M.T. Vaughn, Phys. Lett. B 318, 331 (1993). arXiv:hep-ph/9308222 CrossRefADSGoogle Scholar
  23. 23.
    S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007). arXiv:hep-ex/0606035 CrossRefADSGoogle Scholar
  24. 24.
    A. Arhrib, M. Capdequi-Peyranere, A. Djouadi, Phys. Rev. D 52, 1404 (1995). arXiv:hep-ph/9412382 CrossRefADSGoogle Scholar
  25. 25.
    A. Freitas, D.J. Miller, P.M. Zerwas, Eur. Phys. J. C 21, 361 (2001). arXiv:hep-ph/0106198 CrossRefADSGoogle Scholar
  26. 26.
    V.S. Fadin, V.A. Khoze, in Proceedings, 24th LNPI Winter School, Leningrad, 1989 Google Scholar
  27. 27.
    H.D. Dahmen, D.H. Schiller, D. Wahner, Nucl. Phys. B 227, 291 (1983) CrossRefADSGoogle Scholar
  28. 28.
    K. Hagiwara, H. Murayama, Phys. Lett. B 246, 533 (1990) CrossRefADSGoogle Scholar
  29. 29.
    A. Djouadi, M. Drees, H. Konig, Phys. Rev. D 48, 3081 (1993). arXiv:hep-ph/9305310 CrossRefADSGoogle Scholar
  30. 30.
    A. Brandenburg, M. Maniatis, Phys. Lett. B 558, 79 (2003) arXiv:hep-ph/0301142 CrossRefADSGoogle Scholar
  31. 31.
    J.R. Ellis, M.K. Gaillard, G.G. Ross, Nucl. Phys. B 111, 253 (1976) (Erratum: Nucl. Phys. B 130 (1977) 516) CrossRefADSGoogle Scholar
  32. 32.
    P. Hoyer, P. Osland, H.G. Sander, T.F. Walsh, P.M. Zerwas, Nucl. Phys. B 161, 349 (1979) CrossRefADSGoogle Scholar
  33. 33.
    S. Bethke, Z. Kunszt, D.E. Soper, W.J. Stirling, Nucl. Phys. B 370, 310 (1992) (Erratum: Nucl. Phys. B 523 (1998) 681) CrossRefADSGoogle Scholar
  34. 34.
    W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51 (1997). arXiv:hep-ph/9610490 ADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  • A. Brandenburg
    • 1
  • M. Maniatis
    • 2
    Email author
  • M. M. Weber
    • 3
  • P. M. Zerwas
    • 1
    • 4
  1. 1.Deutsches Elektronen Synchrotron DESYHamburgGermany
  2. 2.Institut für Theoretische PhysikHeidelbergGermany
  3. 3.Department of PhysicsUniversity at BuffaloBuffaloUSA
  4. 4.Inst. Theor. Phys. ERWTH Aachen U.AachenGermany

Personalised recommendations