Advertisement

The European Physical Journal C

, Volume 58, Issue 2, pp 331–335 | Cite as

Self-interaction in the von Kármán cosmic string street configuration

  • J. Carvalho
  • C. FurtadoEmail author
  • F. Moraes
Regular Article - Theoretical Physics
  • 49 Downloads

Abstract

We study the problem of electromagnetic self-interaction of line sources in the presence of an array of parallel cosmic strings akin to the von Kármán vortex street configuration. Keeping in mind possible applications in condensed matter physics we consider also a mixed array where both deficit angle and excess angle cosmic strings appear. We obtain explicit expressions for both the electric and magnetic self-energies for the cases studied and demonstrate that these results reproduce the known self-energies in the single-string limit.

PACS

04.40.-b 11.27.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. DeWitt, B.S. DeWitt, Physics 1, 3 (1964) Google Scholar
  2. 2.
    A. Vilenkin, Phys. Rev. D 20, 373 (1979) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    B. Linet, Phys. Rev. D 33, 1833 (1986) CrossRefADSGoogle Scholar
  4. 4.
    A.G. Smith, C.M. Will, Phys. Rev. D 22, 1276 (1980) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 2000), p. 54 Google Scholar
  6. 6.
    T. Soraudeep, V. Sahni, Phys. Rev. D 46, 1833 (1992) Google Scholar
  7. 7.
    C. Furtado, F. Moraes, Class. Quantum Gravity 14, 3425 (1997) zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M.E.X. Guimarães, B. Linet, Class. Quantum Gravity 10, 166 (1993) CrossRefGoogle Scholar
  9. 9.
    E.R.B. Mello, V.B. Bezerra, C. Furtado, F. Moraes, Phys. Rev. D 51, 7140 (1995) CrossRefADSGoogle Scholar
  10. 10.
    E.R.B. Mello, V.B. Bezerra, Y.V. Grats, Class. Quantum Gravity 15, 1915 (1998) zbMATHCrossRefADSGoogle Scholar
  11. 11.
    A.M.M. Carvalho, C. Furtado, F. Moraes, Phys. Rev. D 62, 0675041 (2000) CrossRefGoogle Scholar
  12. 12.
    S. Azevedo, F. Moraes, Phys. Lett. A 246, 374 (1998) CrossRefADSGoogle Scholar
  13. 13.
    V.A. Lorenci, E.S. Moreira, Jr., Phys. Rev. D 65, 085013 (2002) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    I.V.L. Costa, F.A. Oliveira, M.E.X. Guimarães, F. Moraes, Phys. Lett. A 351, 216 (2006) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    V.B. Bezerra, N.R. Khusnutdinov, Phys. Rev. D 64, 083506 (2001) CrossRefADSGoogle Scholar
  16. 16.
    A.M.M. Carvalho, C. Furtado, F. Moraes, Int. J. Mod. Phys. A 19, 2113 (2004) CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    F. Moraes, A.M.M. Carvalho, I.V.L. Costa, F.A. Oliveira, C. Furtado, Phys. Rev. D 68, 043512 (2003) CrossRefADSGoogle Scholar
  18. 18.
    P.S. Letelier, Class. Quantum Gravity 17, 3639 (2001) CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    F. Moraes, Braz. J. Phys. 30, 204 (2000) CrossRefGoogle Scholar
  20. 20.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975) zbMATHGoogle Scholar
  21. 21.
    Y. Grats, A. Garcia, Class. Quantum Gravity 13, 189 (1996) zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    P.S. Letelier, Class. Quantum Gravity 12, 471 (1995) zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    M.O. Katanaev, Theor. Math. Phys. 135, 733 (2003) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations