The European Physical Journal C

, Volume 58, Issue 2, pp 347–353 | Cite as

Spherically symmetric non-commutative space: d=4

  • M. BurićEmail author
  • J. Madore
Regular Article - Theoretical Physics


In order to find a non-commutative analog of Schwarzschild or Schwarzschild–de Sitter black hole we investigate spherically symmetric spaces generated by four non-commutative coordinates in the frame formalism. We present two solutions which, however, do not possess the prescribed commutative limit. Our analysis indicates that the appropriate non-commutative space might be found as a subspace of a higher-dimensional space.


02.40.Gh 04.60.-m 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Muller-Hoissen, Non-commutative geometries and gravity. arXiv:0710.4418 [gr-qc]
  2. 2.
    R.J. Szabo, Symmetry, gravity and non-commutativity. Class. Quantum Gravity 23, R199 (2006). arXiv:hep-th/0606233 zbMATHCrossRefADSGoogle Scholar
  3. 3.
    S. Ansoldi, P. Nicolini, A. Smailagic, E. Spallucci, Non-commutative geometry inspired charged black holes. Phys. Lett. B 645, 261 (2007). arXiv:gr-qc/0612035 CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    P. Nicolini, A. Smailagic, E. Spallucci, Non-commutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547 (2006). arXiv:gr-qc/0510112 CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    R. Banerjee, B.R. Majhi, S.K. Modak, Area law in non-commutative Schwarzschild black hole. arXiv:0802.2176 [hep-th]
  6. 6.
    R. Banerjee, B.R. Majhi, S. Samanta, Non-commutative black hole thermodynamics. Phys. Rev. D 77, 124035 (2008). arXiv:0801.3583 [hep-th] CrossRefADSGoogle Scholar
  7. 7.
    A. Kobakhidze, Non-commutative corrections to classical black holes. arXiv:0712.0642 [gr-qc]
  8. 8.
    M. Chaichian, M.R. Setare, A. Tureanu, G. Zet, On black holes and cosmological constant in non-commutative gauge theory of gravity. J. High Energy Phys. 0804, 064 (2008). arXiv:0711.4546 [hep-th] CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    M. Chaichian, A. Tureanu, G. Zet, Corrections to Schwarzschild solution in non-commutative gauge theory of gravity. Phys. Lett. B 660, 573 (2008). arXiv:0710.2075 [hep-th] CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    P. Mukherjee, A. Saha, Reissner–Nordstrom solutions in non-commutative gravity. Phys. Rev. D 77, 064014 (2008). arXiv:0710.5847 [hep-th] CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A.H. Chamseddine, Deforming Einstein’s gravity. Phys. Lett. B 504, 33 (2001). arXiv:hep-th/0009153 zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, Non-commutative geometry and gravity. Class. Quantum Gravity 23, 1883 (2006). arXiv:hep-th/0510059 zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, J. Wess, Class. Quantum Gravity 22, 3511 (2005). arXiv:hep-th/0504183 zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    B.P. Dolan, K.S. Gupta, A. Stern, Non-commutative BTZ black hole and discrete time. Class. Quantum Gravity 24, 1647 (2007). arXiv:hep-th/0611233 zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    H.C. Kim, M.I. Park, C. Rim, J.H. Yee, Smeared BTZ black hole from space non-commutativity. arXiv:0710.1362 [hep-th]
  16. 16.
    J. Madore, An Introduction to Non-commutative Differential Geometry and Its Physical Applications, 2nd edn. London Mathematical Society Lecture Note Series, vol. 257 (Cambridge University Press, Cambridge, 2000), 2nd revised printing Google Scholar
  17. 17.
    J. Madore, The fuzzy sphere. Class. Quantum Gravity 9, 69–88 (1992) zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    J.P. Gazeau, J. Mourad, J. Queva, Fuzzy de Sitter space–times via coherent states quantization. arXiv:quant-ph/0610222
  19. 19.
    P. Schupp, talk at the Bayrishzell 2007 Workshop Google Scholar
  20. 20.
    M. Burić, J. Madore, Non-commutative spherical symmetry, in preparation Google Scholar
  21. 21.
    E. Cartan, Riemannian Geometry in an Orthogonal Frame (World Scientific, Singapore, 2002) Google Scholar
  22. 22.
    M. Burić, T. Grammatikopoulos, J. Madore, G. Zoupanos, Gravity and the structure of non-commutative algebras. J. High Energy Phys. 04, 054 (2006). arXiv:hep-th/0603044 CrossRefADSGoogle Scholar
  23. 23.
    M. Burić, J. Madore, G. Zoupanos, The energy-momentum of a Poisson structure. Eur. Phys. J. C 55, 489 (2008). arXiv:0709.3159 [hep-th] CrossRefADSGoogle Scholar
  24. 24.
    J. Mourad, Linear connections in non-commutative geometry. Class. Quantum Gravity 12, 965 (1995) zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    M. Dubois-Violette, J. Madore, T. Masson, J. Mourad, On curvature in non-commutative geometry. J. Math. Phys. 37(8), 4089–4102 (1996). arXiv:q-alg/9512004 zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    M. Burić, J. Madore, A dynamical 2-dimensional fuzzy space. Phys. Lett. B 622, 183–191 (2005). arXiv:hep-th/0507064 CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Laboratoire de Physique ThéoriqueUniversité de Paris-SudOrsayFrance

Personalised recommendations