Thermodynamics of Gauss–Bonnet black holes revisited

  • Yun Soo Myung
  • Yong-Wan KimEmail author
  • Young-Jai Park
Regular Article - Theoretical Physics


We investigate the Gauss–Bonnet black hole in five dimensional anti-de Sitter spacetimes (GBAdS). We analyze all thermodynamic quantities of the GBAdS, which is characterized by the Gauss–Bonnet coupling c and mass M, comparing with those of the Born–Infeld-AdS (BIAdS), Reissner–Norström-AdS black holes (RNAdS), Schwarzschild-AdS (SAdS), and BTZ black holes. For c<0 we cannot obtain the black hole with positively definite thermodynamic quantities of mass, temperature, and entropy, because the entropy does not satisfy the area law. On the other hand, for c>0, we find the BIAdS-like black hole, showing that the coupling c plays the role of a pseudo-charge. Importantly, we could not obtain the SAdS in the limit of c→0, which means that the GBAdS is basically different from the SAdS. In addition, we clarify the connections between thermodynamic and dynamical stability. Finally, we also conjecture that if a black hole is big and thus globally stable, its quasi-normal modes may take on analytic expressions.


04.70.Dy 04.50.Gh 04.70.-s 


  1. 1.
    D.G. Boulware, S. Deser, String generated gravity models. Phys. Rev. Lett. 55, 2656 (1985) CrossRefADSGoogle Scholar
  2. 2.
    R.C. Myers, J.Z. Simon, Black hole thermodynamics in lovelock gravity. Phys. Rev. D 38, 2434 (1988) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    D.J. Gross, E. Witten, Superstring modifications of Einstein’s equations. Nucl. Phys. B 277, 1 (1986) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    R.R. Metsaev, A.A. Tseytlin, Two loop beta function for the generalized bosonic sigma model. Phys. Lett. B 191, 354 (1987) CrossRefADSGoogle Scholar
  5. 5.
    C.G. Callan, R.C. Myers, M.J. Perry, Black holes in string theory. Nucl. Phys. B 311, 673 (1989) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    R.C. Myers, Higher derivative gravity, surface terms and string theory. Phys. Rev. D 36, 392 (1987) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    J.T. Wheeler, Symmetric solutions to the Gauss–Bonnet extended Einstein equations. Nucl. Phys. B 268, 737 (1986) CrossRefADSGoogle Scholar
  8. 8.
    Y.M. Cho, I.P. Neupane, Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity. Phys. Rev. D 66, 024044 (2002). arXiv:hep-th/0202140 CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    T. Torii, H. Maeda, Spacetime structure of static solutions in Gauss–Bonnet gravity: Neutral case. Phys. Rev. D 71, 124002 (2005). arXiv:hep-th/0504127 CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998) arXiv:hep-th/9803131 zbMATHMathSciNetGoogle Scholar
  12. 12.
    A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999). arXiv:hep-th/9902170 CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    T.K. Dey, S. Mukherji, S. Mukhopadhyay, S. Sarkar, Phase transitions in higher derivative gravity and gauge theory: R-charged black holes. J. High. Energy Phys. 0709, 026 (2007). arXiv:0706.3996 [hep-th] CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Y.S. Myung, Phase transition between non-extremal and extremal Reissner–Nordstrom black holes. Mod. Phys. Lett. A 23, 667 (2008). arXiv:0710.2568 [gr-qc] zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    T.K. Dey, S. Mukherji, S. Mukhopadhyay, S. Sarkar, Phase transitions in higher derivative gravity. J. High. Energy Phys. 0704, 014 (2007). arXiv:hep-th/0609038 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Y.S. Myung, Y.-W. Kim, Y.-J. Park, Thermodynamics of Einstein–Born–Infeld black holes in three dimensions. Phys. Rev. D 78, 044020 (2008). arXiv:0804.0301 [gr-qc] CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Y.S. Myung, Y.-W. Kim, Y.-J. Park, Thermodynamics and phase transitions in the Born–Infeld-anti-de Sitter black holes. Phys. Rev. D. 78, 084002 (2008). arXiv:0805.0187 [gr-qc] CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    K.D. Kokkotas, B.G. Schmidt, Quasi-normal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999). arXiv:gr-qc/9909058 ADSMathSciNetGoogle Scholar
  19. 19.
    D. Birmingham, I. Sachs, S.N. Solodukhin, Conformal field theory interpretation of black hole quasi-normal modes. Phys. Rev. Lett. 88, 151301 (2002). arXiv:hep-th/0112055 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    D. Birmingham, S. Mokhtari, Exact gravitational quasi-normal frequencies of topological black holes. Phys. Rev. D 74, 084026 (2006). arXiv:hep-th/0609028 CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    G.T. Horowitz, V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D 62, 024027 (2000). arXiv:hep-th/9909056 CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    G. Siopsis, Analytic calculation of quasi-normal modes. arXiv:0804.2713 [hep-th]
  23. 23.
    Y.S. Myung, H.W. Lee, Unitarity issue in BTZ black holes. Mod. Phys. Lett. A 21, 1737 (2006). arXiv:hep-th/0506031 zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    S. Musiri, G. Siopsis, Asymptotic form of quasi-normal modes of large AdS black holes. Phys. Lett. B 576, 309 (2003). arXiv:hep-th/0308196 zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    E. Berti, V. Cardoso, Quasinormal modes and thermodynamic phase transitions. Phys. Rev. D 77, 087501 (2008). arXiv:0802.1889 [hep-th] CrossRefADSGoogle Scholar
  26. 26.
    J. Grain, A. Barrau, Eur. Phys. J. C 53, 641 (2008). arXiv:hep-th/0701265 CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    T. Hirayama, Negative modes of Schwarzschild black hole in Einstein–Gauss–Bonnet Theory. arXiv:0804.3694 [gr-qc]
  28. 28.
    R. Myers, Superstring gravity and black holes. Nucl. Phys. B 289, 701 (1987) CrossRefADSGoogle Scholar
  29. 29.
    S. Nojiri, S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining–deconfining phases in dual CFT. Phys. Lett. B 521, 87 (2001) [Erratum: Phys. Lett. B 542, 301 (2002)]. arXiv:hep-th/0109122 zbMATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    R.G. Cai, Gauss–Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002). arXiv:hep-th/0109133 CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    M. Cvetic, S. Nojiri, S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein–Gauss–Bonnet gravity. Nucl. Phys. B 628, 295 (2002). arXiv:hep-th/0112045 zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    I.P. Neupane, Black hole entropy in string-generated gravity models. Phys. Rev. D 67, 061501 (2003). arXiv:hep-th/0212092 CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    I.P. Neupane, Thermodynamic and gravitational instability on hyperbolic spaces. Phys. Rev. D 69, 084011 (2004). arXiv:hep-th/0302132 CrossRefADSGoogle Scholar
  34. 34.
    T. Clunan, S.F. Ross, D.J. Smith, On Gauss–Bonnet black hole entropy. Class. Quantum Gravity 21, 3447 (2004). arXiv:gr-qc/0402044 zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    P.C.W. Davies, The thermodynamic theory of black holes. Proc. R. Soc. Lond. A 353, 499 (1977) ADSCrossRefGoogle Scholar
  36. 36.
    D. Pavon, Phase transition in Reissner–Nordström black holes. Phys. Rev. D 43, 2495 (1991) CrossRefADSGoogle Scholar
  37. 37.
    J. Jing, Q. Pan, Quasinormal modes and second order thermodynamic phase transition for Reissner–Nordström black hole. Phys. Lett. B 660, 13 (2008). arXiv:0802.0043 [gr-qc] CrossRefADSGoogle Scholar
  38. 38.
    Y.S. Myung, Y.-W. Kim, Y.-J. Park, Ruppeiner geometry and 2D dilaton gravity in the thermodynamics of black holes. Phys. Lett. B 663, 342 (2008). arXiv:0802.2152 [hep-th] CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Y.S. Myung, Phase transition between the BTZ black hole and AdS space. Phys. Lett. B 638, 515 (2006). arXiv:gr-qc/0603051 CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    T. Harmark, V. Niarchos, N.A. Obers, Instabilities of black strings and branes. Class. Quantum Gravity 24, R1 (2007). arXiv:hep-th/0701022 zbMATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    S.S. Gubser, I. Mitra, Instability of charged black holes in anti-de Sitter space. arXiv:hep-th/0009126
  42. 42.
    S.S. Gubser, I. Mitra, The evolution of unstable black holes in anti-de Sitter space. J. High. Energy Phys. 0108, 018 (2001). arXiv:hep-th/0011127 CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    H.S. Reall, Classical and thermodynamic stability of black branes. Phys. Rev. D 64, 044005 (2001). arXiv:hep-th/0104071 CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    R.K. Kaul, P. Majumdar, Quantum black hole entropy. Phys. Lett. B 439, 267 (1998). arXiv:gr-qc/9801080 CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    R.K. Kaul, P. Majumdar, Logarithmic correction to the Bekenstein–Hawking entropy. Phys. Rev. Lett. 84, 5255 (2000). arXiv:gr-qc/0002040 CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula. Class. Quantum Gravity 17, 4175 (2000) arXiv:gr-qc/0005017 zbMATHCrossRefADSMathSciNetGoogle Scholar
  47. 47.
    T.R. Govindarajan, R.K. Kaul, V. Suneeta, Logarithmic correction to the Bekenstein–Hawking entropy of the BTZ black. Class. Quantum Gravity 18, 2877 (2001). arXiv:gr-qc/0104010 zbMATHCrossRefADSMathSciNetGoogle Scholar
  48. 48.
    D. Birmingham, S. Sen, An exact black hole entropy bound. Phys. Rev. D 63, 047501 (2001). arXiv:hep-th/0008051 CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    R. Banerjee, B.R. Majhi, Quantum tunneling and back reaction. Phys. Lett. B 662, 62 (2008). arXiv:0801.0200 [hep-th] CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    R. Banerjee, B.R. Majhi, Quantum tunneling beyond semiclassical approximation. J. High Energy Phys. 0806, 095 (2008). arXiv:0805.2220 [hep-th] CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    S. Das, P. Majumdar, R.K. Bhaduri, General logarithmic corrections to black hole entropy. Class. Quantum Gravity 19, 2355 (2002). arXiv:hep-th/0111001 zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Institute of Basic Science and School of Computer Aided ScienceInje UniversityGimhaeSouth Korea
  2. 2.Department of PhysicsSogang UniversitySeoulSouth Korea

Personalised recommendations