Advertisement

The European Physical Journal C

, Volume 58, Issue 1, pp 37–46 | Cite as

The influence of direct D-meson production on the determination of the nucleon strangeness asymmetry via dimuon events in neutrino experiments

  • Puze Gao
  • Bo-Qiang MaEmail author
Regular Article - Theoretical Physics
  • 36 Downloads

Abstract

Experimentally, the production of oppositely charged dimuon events by neutrino and antineutrino deep inelastic scattering (DIS) is used to determine the strangeness asymmetry inside a nucleon. Here we point out that the direct production of a D-meson in DIS may have a substantial influence on the measurement of nucleon strangeness distributions. Direct D-meson production is via heavy quark recombination (HQR) and via light-quark fragmentation from perturbative QCD (LQF-P). To see the influence precisely, we compute the direct D-meson productions via HQR and LQF-P quantitatively and estimate their corrections to the analysis of the strangeness asymmetry. The results show that HQR has a stronger effect than LQF-P does, and the former may influence the experimental determination of the nucleon strangeness asymmetry.

Keywords

Fragmentation Function Deep Inelastic Scattering Leading Order Charm Production Heavy Quark Spin Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Brodsky, B.-Q. Ma, Phys. Lett. B 381, 317 (1996) CrossRefADSGoogle Scholar
  2. 2.
    A.I. Signal, A.W. Thomas, Phys. Lett. B 191, 205 (1987) CrossRefADSGoogle Scholar
  3. 3.
    M. Burkardt, B.J. Warr, Phys. Rev. D 45, 958 (1992) CrossRefADSGoogle Scholar
  4. 4.
    G.P. Zeller et al., Phys. Rev. Lett. 88, 091802 (2002) CrossRefADSGoogle Scholar
  5. 5.
    G.P. Zeller et al., Phys. Rev. D 65, 111103(R) (2002) CrossRefADSGoogle Scholar
  6. 6.
    F. Olness et al., Eur. Phys. J. C 40, 145 (2005) CrossRefADSGoogle Scholar
  7. 7.
    S. Kretzer et al., Phys. Rev. Lett. 93, 041802 (2004) CrossRefADSGoogle Scholar
  8. 8.
    Y. Ding, B.-Q. Ma, Phys. Lett. B 590, 216 (2004) CrossRefADSGoogle Scholar
  9. 9.
    J. Alwall, G. Ingelman, Phys. Rev. D 70, 111505(R) (2004) CrossRefADSGoogle Scholar
  10. 10.
    Y. Ding, R.-G. Xu, B.-Q. Ma, Phys. Lett. B 607, 101 (2005) CrossRefADSGoogle Scholar
  11. 11.
    Y. Ding, R.-G. Xu, B.-Q. Ma, Phys. Rev. D 71, 094014 (2005) CrossRefADSGoogle Scholar
  12. 12.
    M. Wakamatsu, Phys. Rev. D 71, 057504 (2005) CrossRefADSGoogle Scholar
  13. 13.
    S.A. Rabinowitz et al., Phys. Rev. Lett. 70, 134 (1993) CrossRefADSGoogle Scholar
  14. 14.
    CCFR Collaboration, A.O. Bazarko et al., Z. Phys. C 65, 189 (1995) CrossRefADSGoogle Scholar
  15. 15.
    M. Goncharov et al., Phys. Rev. D 64, 112006 (2001) CrossRefADSGoogle Scholar
  16. 16.
    D. Mason, For the NuTeV Collaboration. hep-ex/0405037 (2004)
  17. 17.
    D. Mason, FERMILAB-THESIS-2006-01 Google Scholar
  18. 18.
    D. Mason et al., Phys. Rev. Lett. 99, 192001 (2007) CrossRefADSGoogle Scholar
  19. 19.
    V. Barone et al., Eur. Phys. J. C 12, 243 (2000) CrossRefADSGoogle Scholar
  20. 20.
    H.L. Lai et al., J. High Energy Phys. 04, 089 (2007) CrossRefADSGoogle Scholar
  21. 21.
    P. Gao, B.-Q. Ma, Phys. Rev. D 77, 054002 (2008) CrossRefADSGoogle Scholar
  22. 22.
    P. Gao, B.-Q. Ma, Eur. Phys. J. C 44, 63 (2005) CrossRefADSGoogle Scholar
  23. 23.
    Particle Data Group, W.-M. Yao et al., J. Phys. G 33, 1 (2006) CrossRefADSGoogle Scholar
  24. 24.
    E. Braaten, Y. Jia, T. Mehen, Phys. Rev. D 66, 034003 (2002) CrossRefADSGoogle Scholar
  25. 25.
    E. Braaten, Y. Jia, T. Mehen, Phys. Rev. D 66, 014003 (2002) CrossRefADSGoogle Scholar
  26. 26.
    E. Braaten, Y. Jia, T. Mehen, Phys. Rev. Lett. 89, 122002 (2002) CrossRefADSGoogle Scholar
  27. 27.
    E.M. Aitala et al. (Fermilab E791 Collaboration), Phys. Lett. B 371, 157 (1996) CrossRefADSGoogle Scholar
  28. 28.
    P. Gao, B.-Q. Ma, Eur. Phys. J. C 50, 603 (2007) CrossRefADSGoogle Scholar
  29. 29.
    J. Pumplin et al., J. High Energy Phys. 07, 012 (2002) CrossRefADSGoogle Scholar
  30. 30.
    C.-H. Chang, Y.-Q. Chen, Phys. Rev. D 46, 3845 (1992) CrossRefADSGoogle Scholar
  31. 31.
    E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993) CrossRefADSGoogle Scholar
  32. 32.
    E. Braaten, K. Cheung, T.C. Yuan, Phys. Rev. D 48, 4230 (1993) CrossRefADSGoogle Scholar
  33. 33.
    E. Braaten, K. Cheung, T.C. Yuan, Phys. Rev. D 48, R5049 (1993) CrossRefADSGoogle Scholar
  34. 34.
    Y.-Q. Chen, Phys. Rev. D 48, 5181 (1993) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Kavli Institute for Theoretical Physics China and Institute of Theoretical PhysicsCASBeijingChina
  2. 2.Institute of High Energy Physics and Theoretical Physics Center for Science FacilitiesCASBeijingChina
  3. 3.School of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina

Personalised recommendations