Advertisement

The European Physical Journal C

, Volume 59, Issue 4, pp 761–768 | Cite as

Precise predictions for Higgs production in association with a W-boson pair at ILC

  • Song Mao
  • Ma Wen-GanEmail author
  • Zhang Ren-You
  • Guo Lei
  • Wang Shao-Ming
Regular Article - Theoretical Physics

Abstract

Higgs-boson production in association with a W-boson pair at e + e linear colliders is one of the important processes in probing the coupling between the Higgs boson and vector gauge bosons and discovering the signature of new physics. We describe the impact of the complete electroweak (EW) radiative corrections of \(\mathcal{O}(\alpha_{\mathrm{ew}})\) to this process in the standard model (SM) at the International Linear Collider (ILC), and investigate the dependence of the lowest-order (LO) and EW next-to-leading order (NLO) corrected cross sections on the colliding energy \(\sqrt{s}\) and the Higgs-boson mass. The LO and NLO EW corrected distributions of the invariant mass of the W-boson pair and the transverse momenta of the final W-boson and Higgs boson are presented. Our numerical results show that the relative EW radiative correction (δ ew) varies from −19.4% to 0.2% when m H=120 GeV and \(\sqrt{s}\) grows from 300 GeV to 1.2 TeV.

PACS

12.15.Lk 14.80.Bn 14.70.Fm 11.80.Fv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.L. Glashow, Nucl. Phys. 22, 579 (1961) CrossRefGoogle Scholar
  2. 2.
    S. Weinberg, Phys. Rev. Lett. 1, 1264 (1967) CrossRefADSGoogle Scholar
  3. 3.
    A. Salam, in Proc. 8th Nobel Symposium, Stockholm 1968, ed. by N. Svartholm (Almquist and Wiksells, Stockholm, 1968), p. 367 Google Scholar
  4. 4.
    H.D. Politzer, Phys. Rep. 14, 129 (1974) CrossRefADSGoogle Scholar
  5. 5.
    P.W. Higgs, Phys. Lett. 12, 132 (1964) ADSGoogle Scholar
  6. 6.
    P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    P.W. Higgs, Phys. Rev. 145, 1156 (1966) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964) CrossRefADSGoogle Scholar
  10. 10.
    T.W.B. Kibble, Phys. Rev. 155, 1554 (1967) CrossRefADSGoogle Scholar
  11. 11.
    R. Barate et al., Phys. Lett. B 565, 61 (2003) CrossRefGoogle Scholar
  12. 12.
    The LEP Collaborations ALEPH, DELPHI, L3, OPAL, and the LEP Electroweak Working Group. LEPEWWG/2007-01 and arxiv:0712.0929
  13. 13.
  14. 14.
    Proc. of the Workshop on “e + e Collisions at 500 GeV, The Physics Potential”, Munich, Annecy, Hamburg, Feb. 4 to Sept. 3, 1991, DESY publication, 92-123A/B, August 1992, ed. by P.M. Zerwas Google Scholar
  15. 15.
    Proc. of the Workshop on “Physics and Experiments with Linear Colliders”, Saariselkä, Finland, 9–14 Sept., 1991, ed. by R. Orawa, P. Eerola, M. Nordberg (World Scientific, Singapore, 1992) Google Scholar
  16. 16.
    K. Abe et al., Particle physics experiments at JLC, arXiv:hep-ph/0109166
  17. 17.
    J.A. Aguilar-Saavedra et al., TESLA Technical Design Report Pert III: Physics at an e + e Linear Collider, arXiv:hep-ph/0106315
  18. 18.
    T. Abe et al., Linear collider physics resource book for Snowmass 2001. 2: Higgs and supersymmetry studies, in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), ed. by R. Davidon, C. Quigg, arXiv:hep-ex/0106056
  19. 19.
    V. Barger, T. Han, A. Stange, Phys. Rev. D 42, 777 (1990) CrossRefADSGoogle Scholar
  20. 20.
    M. Baillargeon, F. Boudjema, F. Cuypers, E. Gabrielli, B. Mele, Nucl. Phys. B 424, 343 (1994) CrossRefADSGoogle Scholar
  21. 21.
    Y.-J. Zhou, W.-G. Ma, R.-Y. Zhang, Y. Jiang, L. Han, Phys. Rev. D 73, 073009 (2006) CrossRefADSGoogle Scholar
  22. 22.
    T. Hahn, Comput. Phys. Commun. 140, 418 (2001) CrossRefADSzbMATHGoogle Scholar
  23. 23.
    T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999) CrossRefADSGoogle Scholar
  24. 24.
    W.M. Yao et al., J. Phys. G 33, 1 (2006) CrossRefADSGoogle Scholar
  25. 25.
    G.’t Hooft, M. Veltman, Nucl. Phys. B 153, 365 (1979) CrossRefADSGoogle Scholar
  26. 26.
    A. Denner, U. Nierste, R. Scharf, Nucl. Phys. B 367, 637 (1991) CrossRefADSGoogle Scholar
  27. 27.
    G. Passarino, M. Veltman, Nucl. Phys. B 160, 151 (1979) CrossRefADSGoogle Scholar
  28. 28.
    A. Denner, S. Dittmaier, Nucl. Phys. B 658, 175 (2003) CrossRefADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    T. Ishikawa et al. (MINMI-TATEYA collaboration), GRACE User’s manual version 2.0, August 1, 1994 Google Scholar
  30. 30.
    A. Denner, Fortschr. Phys. 41, 307 (1993) Google Scholar
  31. 31.
    B.W. Harris, J.F. Owens, Phys. Rev. D 65, 094032 (2002), arXiv:hep-ph/0102128 CrossRefADSGoogle Scholar
  32. 32.
    G. ’t Hooft, Veltman, Nucl. Phys. B 153, 365 (1979) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  • Song Mao
    • 1
  • Ma Wen-Gan
    • 1
    Email author
  • Zhang Ren-You
    • 1
  • Guo Lei
    • 1
  • Wang Shao-Ming
    • 1
  1. 1.Department of Modern PhysicsUniversity of Science and Technology of China (USTC)AnhuiPeople’s Republic of China

Personalised recommendations