Advertisement

The European Physical Journal C

, Volume 58, Issue 1, pp 123–149 | Cite as

Four-dimensional couplings among BF and massless Rarita–Schwinger theories: a BRST cohomological approach

  • C. Bizdadea
  • E. M. Cioroianu
  • S. O. SaliuEmail author
  • S. C. Săraru
  • M. Iordache
Regular Article - Theoretical Physics

Abstract

The local and manifestly covariant Lagrangian interactions in four spacetime dimensions that can be added to a free model that describes a massless Rarita–Schwinger theory and an Abelian BF theory are constructed by means of deforming the solution to the master equation using specific cohomological techniques.

PACS

11.10.Ef 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Birmingham, M. Blau, M. Rakowski, G. Thompson, Topological field theory. Phys. Rep. 209, 129–340 (1991) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    J.M.F. Labastida, C. Losano, Lectures on topological QFT, in Proceedings of La Plata-CERN-Santiago de Compostela Meeting on Trends in Theoretical Physics, ed. by H. Falomir, R.E. Gamboa, Saraví, F.A. Schaposnik, La Plata/Argentina, April–May 1997. AIP Conference Proceedings, vol. 419 (AIP, New York, 1998), p. 54. Google Scholar
  3. 3.
    P. Schaller, T. Strobl, Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129–3136 (1994). arXiv:hep-th/9405110 zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    N. Ikeda, Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994). arXiv:hep-th/9312059 zbMATHCrossRefADSGoogle Scholar
  5. 5.
    A.Yu. Alekseev, P. Schaller, T. Strobl, Topological G/G WZW model in the generalized momentum representation. Phys. Rev. D 52, 7146–7160 (1995). arXiv:hep-th/9505012 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: I. A unifying approach. Class. Quantum Gravity 13, 965–983 (1996). arXiv:gr-qc/9508020; Erratum-ibid. 14, 825 (1997) zbMATHCrossRefADSGoogle Scholar
  7. 7.
    T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions. II: The universal coverings. Class. Quantum Gravity 13, 2395–2421 (1996). arXiv:gr-qc/9511081 zbMATHCrossRefADSGoogle Scholar
  8. 8.
    T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: III. Solutions of arbitrary topology. Class. Quantum Gravity 14, 1689–1723 (1997). arXiv:hep-th/9607226 zbMATHCrossRefADSGoogle Scholar
  9. 9.
    A.S. Cattaneo, G. Felder, A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000). arXiv:math/9902090 zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A.S. Cattaneo, G. Felder, Poisson sigma models and deformation quantization. Mod. Phys. Lett. A 16, 179–189 (2001). arXiv:hep-th/0102208 CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    C. Teitelboim, Gravitation and Hamiltonian structure in two spacetime dimensions. Phys. Lett. B 126, 41–45 (1983) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    R. Jackiw, Lower dimensional gravity. Nucl. Phys. B 252, 343–356 (1985) CrossRefADSGoogle Scholar
  13. 13.
    M.O. Katanayev, I.V. Volovich, String model with dynamical geometry and torsion. Phys. Lett. B 175, 413–416 (1986) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    J. Brown, Lower Dimensional Gravity (World Scientific, Singapore, 1988) Google Scholar
  15. 15.
    M.O. Katanaev, I.V. Volovich, Two-dimensional gravity with dynamical torsion and strings. Ann. Phys. 197, 1–32 (1990) zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    H.-J. Schmidt, Scale-invariant gravity in two dimensions. J. Math. Phys. 32, 1562 (1991) zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    S.N. Solodukhin, Topological 2D Riemann–Cartan–Weyl gravity. Class. Quantum Gravity 10, 1011–1021 (1993) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    N. Ikeda, K.I. Izawa, General form of dilaton gravity and nonlinear gauge theory. Prog. Theor. Phys. 90, 237–246 (1993). arXiv:hep-th/9304012 CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    T. Strobl, Dirac quantization of gravity-Yang-Mills systems in 1+1 dimensions. Phys. Rev. D 50, 7346–7350 (1994). arXiv:hep-th/9403121 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    D. Grumiller, W. Kummer, D.V. Vassilevich, Dilaton gravity in two dimensions. Phys. Rep. 369, 327–430 (2002). arXiv:hep-th/0204253 zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    T. Strobl, Gravity in two space-time dimensions. Habilitation thesis RWTH Aachen, May 1999, arXiv:hep-th/0011240
  22. 22.
    K. Ezawa, Ashtekar’s formulation for N=1,2 supergravities as “constrained” BF theories. Prog. Theor. Phys. 95, 863–882 (1996). arXiv:hep-th/9511047 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    L. Freidel, K. Krasnov, R. Puzio, BF description of higher-dimensional gravity theories. Adv. Theor. Math. Phys. 3, 1289–1324 (1999). arXiv:hep-th/9901069 zbMATHMathSciNetGoogle Scholar
  24. 24.
    L. Smolin, Holographic formulation of quantum general relativity. Phys. Rev. D 61, 084007 (2000). arXiv:hep-th/9808191 CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Y. Ling, L. Smolin, Holographic formulation of quantum supergravity. Phys. Rev. D 63, 064010 (2001). arXiv:hep-th/0009018 CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    K.-I. Izawa, On nonlinear gauge theory from a deformation theory perspective. Prog. Theor. Phys. 103, 225–228 (2000). arXiv:hep-th/9910133 CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    C. Bizdadea, Note on two-dimensional nonlinear gauge theories. Mod. Phys. Lett. A 15, 2047–2055 (2000). arXiv:hep-th/0201059 zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    N. Ikeda, A deformation of three dimensional BF theory. J. High Energy Phys. 11, 009 (2000). arXiv:hep-th/0010096 CrossRefADSGoogle Scholar
  29. 29.
    N. Ikeda, Deformation of BF theories, topological open membrane and a generalization of the star deformation. J. High Energy Phys. 07, 037 (2001). arXiv:hep-th/0105286 CrossRefADSGoogle Scholar
  30. 30.
    C. Bizdadea, E.M. Cioroianu, S.O. Saliu, Hamiltonian cohomological derivation of four-dimensional nonlinear gauge theories. Int. J. Mod. Phys. A 17, 2191–2210 (2002). arXiv:hep-th/0206186 zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Hamiltonian BRST deformation of a class of n-dimensional BF-type theories. J. High Energy Phys. 01, 049 (2003). arXiv:hep-th/0302037 CrossRefADSGoogle Scholar
  32. 32.
    E.M. Cioroianu, S.C. Săraru, PT-symmetry breaking Hamiltonian interactions in BF models. Int. J. Mod. Phys. A 21, 2573–2599 (2006). arXiv:hep-th/0606164 zbMATHCrossRefADSGoogle Scholar
  33. 33.
    C. Bizdadea, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Couplings of a collection of BF models to matter theories. Eur. Phys. J. C 41, 401–420 (2005). arXiv:hep-th/0508037 CrossRefADSGoogle Scholar
  34. 34.
    N. Ikeda, Chern–Simons gauge theory coupled with BF theory. Int. J. Mod. Phys. A 18, 2689–2702 (2003). arXiv:hep-th/0203043 zbMATHCrossRefADSGoogle Scholar
  35. 35.
    E.M. Cioroianu, S.C. Săraru, Two-dimensional interactions between a BF-type theory and a collection of vector fields. Int. J. Mod. Phys. A 19, 4101–4125 (2004). arXiv:hep-th/0501056 zbMATHCrossRefADSGoogle Scholar
  36. 36.
    C. Bizdadea, E.M. Cioroianu, I. Negru, S.O. Saliu, S.C. Săraru, On the generalized Freedman–Townsend model. J. High Energy Phys. 10, 004 (2006). arXiv:0704.3407 CrossRefADSGoogle Scholar
  37. 37.
    G. Barnich, M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B 311, 123–129 (1993). arXiv:hep-th/9304057 CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    C. Bizdadea, Consistent interactions in the Hamiltonian BRST formalism. Acta Phys. Pol. B 32, 2843–2862 (2001). arXiv:hep-th/0003199 MathSciNetGoogle Scholar
  39. 39.
    N. Ikeda, Topological field theories and geometry of Batalin–Vilkovisky algebras. J. High Energy Phys. 10, 076 (2002). arXiv:hep-th/0209042 CrossRefADSGoogle Scholar
  40. 40.
    N. Ikeda, K.-I. Izawa, Dimensional reduction of nonlinear gauge theories. J. High Energy Phys. 09, 030 (2004). arXiv:hep-th/0407243 CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    M. Henneaux, Consistent interactions between gauge fields: the cohomological approach. Contemp. Math. 219, 93 (1998). arXiv:hep-th/9712226 MathSciNetGoogle Scholar
  42. 42.
    G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism: I. General theorems. Commun. Math. Phys. 174, 57–91 (1995). arXiv:hep-th/9405109 zbMATHCrossRefADSMathSciNetGoogle Scholar
  43. 43.
    G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in gauge theories. Phys. Rep. 338, 439–569 (2000). arXiv:hep-th/0002245 zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    E.S. Fradkin, A.A. Tseytlin, Conformal supergravity. Phys. Rep. 119, 233–362 (1985) CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  • C. Bizdadea
    • 1
  • E. M. Cioroianu
    • 1
  • S. O. Saliu
    • 1
    Email author
  • S. C. Săraru
    • 1
  • M. Iordache
    • 1
  1. 1.Faculty of PhysicsUniversity of CraiovaCraiovaRomania

Personalised recommendations