The European Physical Journal C

, Volume 58, Issue 1, pp 115–122 | Cite as

Color Grosse–Wulkenhaar models: one-loop β-functions

  • Joseph Ben Geloun
  • Vincent RivasseauEmail author
Regular Article - Theoretical Physics


The β-functions of O(N) and U(N) invariant Grosse–Wulkenhaar models are computed at one loop using the matrix basis. In particular, for “parallel interactions”, the model is proved to be asymptotically free in the UV limit for N>1, and it has a triviality problem or Landau ghost for N<1. The vanishing β-function is recovered solely at N=1. We discuss various possible consequences of these results.


02.40.Gh 11.10.Nx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.R. Douglas, N.A. Nekrasov, Non-commutative field theory. Rev. Mod. Phys. 73, 977–1029 (2001). hep-th/0106048 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    R.J. Szabo, Quantum field theory on non-commutative spaces. Phys. Rep. 378, 207–299 (2003). hep-th/0109162 zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    H. Grosse, R. Wulkenhaar, Renormalization of φ 4-theory on non commutative ℝ4 in the matrix base. Commun. Math. Phys. 256, 305–374 (2005). hep-th/0401128 zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    H. Grosse, R. Wulkenhaar, Power-counting theorem for non-local matrix models and renormalization. Commun. Math. Phys. 254, 91–127 (2005). hep-th/0305066 zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    H. Grosse, R. Wulkenhaar, Renormalisation of φ 4 theory on non-commutative ℝ4 to all orders. Lett. Math. Phys. 71, 13 (2005). hep-th/0403232 zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    V. Rivasseau, Non-commutative renormalization. Seminaire Poincaré X, Espaces Quantiques (2007), pp. 15–95 Google Scholar
  7. 7.
    E. Langmann, R.J. Szabo, Duality in scalar field theory on non-commutative phase spaces. Phys. Lett. B 533, 168–177 (2002). hep-th/0202039 zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    V. Rivasseau, F. Vignes-Tourneret, R. Wulkenhaar, Renormalization of non-commutative φ 4-theory by multi-scale analysis. Commun. Math. Phys. 262, 565–594 (2006). hep-th/0501036 zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    H. Grosse, R. Wulkenhaar, The β-function in duality-covariant non-commutative φ 4-theory. Eur. Phys. J. C 35, 277–282 (2004). hep-th/0402093 CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, Renormalization of non-commutative φ 44 field theory in direct space. Commun. Math. Phys. 267, 515–542 (2006). hep-th/0612271 zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    R. Gurau, V. Rivasseau, Parametric representation of non-commutative field theory. Commun. Math. Phys. 272, 811–835 (2007). hep-th/0606030 zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    R. Gurau, A. Tanasa, Dimensional renormalization of renormalization of non-commutative QFT. Ann. Henri Poincaré (2007). hep-th/0706.1147
  13. 13.
    M. Disertori, V. Rivasseau, Two and three loops beta function of non commutative φ 44 theory. Eur. Phys. J. C 50, 661–671 (2007). hep-th/0610224 CrossRefADSGoogle Scholar
  14. 14.
    M. Disertori, R. Gurau, J. Magnen, V. Rivasseau, Vanishing of beta function of non commutative φ 44 theory to all orders. Phys. Lett. B 649, 95–102 (2007). hep-th/0612251 CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    F. Vignes-Tourneret, Renormalization of the orientable non-commutative Gross-Neveu model. Ann. Henri Poincaré 8, 427–474 (2007). math-ph/0606069 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    V. Rivasseau, From Perturbative to Constructive Renormalization (Princeton Univ. Press, Princeton, 1991) Google Scholar
  17. 17.
    B.A. Campbell, K. Kaminsky, Non-commutative linear sigma models. Nucl. Phys. B 606, 613–635 (2001). hep-th/0102022 zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    B.A. Campbell, K. Kaminsky, Non-commutative field theory and spontaneous symmetry breaking. Nucl. Phys. B 581, 240–256 (2000). hep-th/0003137 zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    A. de Goursac, A. Tanasa, J.-C. Wallet, Vacuum configurations for renormalizable non-commutative scalar models. Eur. Phys. J. C 53, 459–466 (2008). hep-th/0709.3950 CrossRefADSGoogle Scholar
  20. 20.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979) Google Scholar
  21. 21.
    R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982) zbMATHGoogle Scholar
  22. 22.
    J. Ben Geloun, R. Gurau, V. Rivasseau, in preparation Google Scholar
  23. 23.
    T. Thiemann, Lectures on loop quantum gravity. Lect. Notes Phys. 631, 41–135 (2003). gr-qc/0210094 ADSMathSciNetGoogle Scholar
  24. 24.
    A. Ashtekar, J. Lewandowski, Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53–R152 (2004). gr-qc/0404018 zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    C. Rovelli, Quantum Gravity (Cambridge Univ. Press, Cambridge, 2004) zbMATHGoogle Scholar
  26. 26.
    L. Freidel, Group field theory: an overview. Int. J. Theor. Phys. 44, 1769–1779 (2005). hep-th/0505016 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.International Chair of Mathematical Physics and Applications, ICMPA-UNESCO ChairUniversité d’Abomey-CalaviCotonouBenin
  2. 2.Faculté des Sciences et TechniquesUniversité Cheikh Anta DiopDakarSenegal
  3. 3.Laboratoire de Physique Théorique, UMR CNRS 8627Université Paris-Sud X1OrsayFrance

Personalised recommendations