Advertisement

Torsion-induced spin precession

  • Morteza MohseniEmail author
Regular Article - Theoretical Physics
  • 50 Downloads

Abstract

We investigate the motion of a spinning test particle in a spatially-flat FRW-type space-time in the framework of the Einstein–Cartan theory. The space-time has a torsion arising from a spinning fluid filling the space-time. We show that, for spinning particles with non-zero transverse spin components, the torsion induces a precession of the particle spin around the direction of the spin of the fluid. We also show that a charged spinning particle moving in a torsion-less spatially-flat FRW space-time in the presence of a uniform magnetic field undergoes a precession of a different character.

PACS

04.40.Nr 04.90.+e 

References

  1. 1.
    H.I. Arcos, J.G. Pereira, Int. J. Mod. Phys. D 13, 2193 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    A. Trautman, in Encyclopedia of Mathematical Physics, ed. by J.-P. Françoise, G.L. Naber, S.T. Tsou, vol. 2 (Elsevier, Amsterdam, 2006), pp. 189–195 Google Scholar
  3. 3.
    F.W. Hehl, Y. Obukhov, Ann. Fond. Louis Broglie 32, 157 (2007) MathSciNetGoogle Scholar
  4. 4.
    R. Utiyama, Phys. Rev. 101, 1597 (1956) zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    T. Kibble, J. Math. Phys. 2, 212 (1961) zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    M. Chaichian, M. Oksanen, A. Tureanu, G. Zet, arXiv:0807.0733 [hep-th] (2008)
  7. 7.
    M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604, 98 (2004) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M. Chaichian, P. Presnajder, A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005) CrossRefADSGoogle Scholar
  9. 9.
    I. Buchbinder, S.D. Odintsov, I. Shapiro, Phys. Lett. B 162, 92 (1985) CrossRefADSGoogle Scholar
  10. 10.
    E. Elizalde, S.D. Odintsov, Phys. Lett. B 315, 245 (1993) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    M. Gasperini, Phys. Rev. Lett. 56, 2873 (1986) CrossRefADSGoogle Scholar
  12. 12.
    F.W. Hehl, Phys. Lett. A 36, 225 (1971) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    A. Trautman, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 20, 895 (1972) Google Scholar
  14. 14.
    P.B. Yasskin, W.R. Stoeger, Phys. Rev. D 21, 2081 (1980) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    S. Hojman, Phys. Rev. D 18, 2741 (1978) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    G. Cognola, R. Soldati, L. Vanzo, S. Zerbini, Phys. Rev. D 25, 3109 (1982) CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    G. Cognola, R. Soldati, L. Vanzo, S. Zerbini, Nuovo Cim. 76B, 109 (1983) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    C.F. Pei, Int. J. Theor. Phys. 29, 161 (1990) zbMATHCrossRefGoogle Scholar
  19. 19.
    K. Nomura, T. Shirafuji, K. Hayashi, Prog. Theor. Phys. 86, 1239 (1991) CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    M. Leclerc, Class. Quantum Gravity 22, 3209 (1995) MathSciNetGoogle Scholar
  21. 21.
    W.G. Dixon, Proc. R. Soc. Lond. Ser. A 314, 499 (1970) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Sciama, Rev. Mod. Phys. 36, 463 (1964) CrossRefADSGoogle Scholar
  23. 23.
    D. Sciama, Rev. Mod. Phys. 36, 1103 (1964) CrossRefADSGoogle Scholar
  24. 24.
    W. Kopczynski, Phys. Lett. A 43, 63 (1973) CrossRefADSGoogle Scholar
  25. 25.
    S. Hojman, M. Rosenbaum, M.P. Ryan, Phys. Rev. D 19, 430 (1979) CrossRefADSGoogle Scholar
  26. 26.
    J.A. Nieto, M.P. Ryan, Nuovo Cim. A 63, 71 (1981) CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    A.K. Raychaudhuri, Phys. Rev. D 15, 952 (1975) CrossRefADSGoogle Scholar
  28. 28.
    W.G. Dixon, Nuovo Cim. 34, 317 (1964) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    J.M. Souriau, Ann. Inst. Henri Poincaré A 20, 315 (1974) MathSciNetGoogle Scholar
  30. 30.
    V.A. Kostelecky, N. Russel, J.D. Tasson, Phys. Rev. Lett. 100, 111102 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Physics DepartmentPayame Noor UniversityTehranIran

Personalised recommendations