Advertisement

The European Physical Journal C

, Volume 56, Issue 4, pp 585–590 | Cite as

A renormalized perturbation theory for problems with non-trivial boundary conditions or backgrounds in two space–time dimensions

  • Reza Moazzemi
  • Abdollah Mohammadi
  • Siamak S. GoushehEmail author
Regular Article - Theoretical Physics

Abstract

We discuss the effects of non-trivial boundary conditions or backgrounds, including non-perturbative ones, on the renormalization program for systems in two dimensions. We present an alternative renormalization procedure in which these non-perturbative conditions can be taken into account in a self-contained and, we believe, self-consistent manner. These conditions have profound effects on the properties of the system, in particular all of its n-point functions. To be concrete, we investigate these effects in the λ φ 4 model in two dimensions and show that the mass counterterms turn out to be proportional to the Green’s functions which have a non-trivial position dependence in these cases. We then compute the difference between the mass counterterms in the presence and absence of these conditions. We find that in the case of non-trivial boundary conditions this difference is minimum between the boundaries and infinite on them. The minimum approaches zero when the boundaries go to infinity. In the case of non-trivial backgrounds, we consider the kink background and show that the difference is again small and localized around the kink.

Keywords

Soliton Solitary Wave Zero Mode Casimir Energy Renormalization Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields (Gostekhizdat, Moscow, 1957) Google Scholar
  2. 2.
    R. Jackiw, Rev. Mod. Phys. 49, 681 (1977) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1985), Chap. 6 zbMATHGoogle Scholar
  4. 4.
    F.A. Baron, R.M. Cavalcanti, C. Farina, Nucl. Phys. B Proc. Suppl. 127, 118 (2004) CrossRefADSGoogle Scholar
  5. 5.
    C.D. Fosco, N.F. Svaiter, model. J. Math. Phys. 42, 5185 (2001) zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    J.A. Nogueria, P.L. Barbieri, Braz. J. Phys. 32, 798 (2002) Google Scholar
  7. 7.
    N.F. Svaiter, J. Math. Phys. 45, 4524 (2004) zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M. Aparico Alcalde, G. Flores Hidalgo, N.F. Svaiter, J. Math. Phys. 47, 052303 (2006) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    R.F. Dashen, B. Hasslacher, A. Neveu, Phys. Rev. D 10, 4130 (1974) CrossRefADSGoogle Scholar
  10. 10.
    R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1984) Google Scholar
  11. 11.
    A. Rebhan, P. van Nieuwenhuizen, Nucl. Phys. B 508, 449 (1997) zbMATHCrossRefADSGoogle Scholar
  12. 12.
    F.A. Baron, R.M. Cavalcanti, C. Farina, arXiv:hep-th/0312169v1
  13. 13.
    S. Weinberg, The Quantum Theory of Fields, vol. I (Cambridge University Press, Cambridge, 1995), Chap. 12 Google Scholar
  14. 14.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison–Wesley, Reading, 1995), Chap. 10 Google Scholar
  15. 15.
    S. Coleman, Phys. Rev. D 11, 2088 (1975) CrossRefADSGoogle Scholar
  16. 16.
    R. Moazzemi, M. Namdar, S.S. Gousheh, JHEP 09, 029 (2007) CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    R. Moazzemi, S.S. Gousheh, Phys. Lett. B 658, 255 (2008) ADSGoogle Scholar
  18. 18.
    J. Goldstone, R. Jackiw, Phys. Rev. D 11, 1486 (1975) CrossRefADSGoogle Scholar
  19. 19.
    M. Shifman, A. Vainshtein, M. Voloshin, Phys. Rev. D 59, 045016 (1999) CrossRefADSGoogle Scholar
  20. 20.
    S.S. Gousheh, R. López-Mobilia, Nucl. Phys. B 428, 189 (1994) CrossRefADSGoogle Scholar
  21. 21.
    A.S. Goldhaber, A. Litvintsev, P. van Nieuwenhuizen, Phys. Rev. D 67, 105021 (2003) ADSMathSciNetGoogle Scholar
  22. 22.
    A.S. Goldhaber, A. Rebhan, P. van Nieuwenhuizen, R. Wimmer, arXiv:hep-th/0211087v2
  23. 23.
    A. Mohammadi, M. Asghari, R. Moazzemi, S.S. Gousheh, arXiv:0806.0369

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  • Reza Moazzemi
    • 1
  • Abdollah Mohammadi
    • 1
  • Siamak S. Gousheh
    • 1
    Email author
  1. 1.Department of PhysicsShahid Beheshti University G. C.TehranIran

Personalised recommendations