Skip to main content

First results from DAMA/LIBRA and the combined results with DAMA/NaI

Abstract

The highly radiopure ≃ 250 kg NaI(Tl) DAMA/LIBRA set-up is running at the Gran Sasso National Laboratory of the INFN. In this paper the first result obtained by exploiting the model independent annual modulation signature for Dark Matter (DM) particles is presented. It refers to an exposure of 0.53 ton×yr. The collected DAMA/LIBRA data satisfy all the many peculiarities of the DM annual modulation signature. Neither systematic effects nor side reactions able to account for the observed modulation amplitude and to contemporaneously satisfy all the several requirements of this DM signature are available. Considering the former DAMA/NaI and the present DAMA/LIBRA data all together (total exposure 0.82 ton×yr), the presence of Dark Matter particles in the galactic halo is supported, on the basis of the DM annual modulation signature, at 8.2 σ C.L.; in particular, in the energy interval (2–6) keV, the modulation amplitude is (0.0131±0.0016) cpd/kg/keV and the phase and the period are well compatible with June 2nd and one year, respectively.

References

  1. 1.

    R. Bernabei et al., Phys. Lett. B 389, 757 (1996)

    ADS  Article  Google Scholar 

  2. 2.

    R. Bernabei et al., Phys. Lett. B 424, 195 (1998)

    ADS  Article  Google Scholar 

  3. 3.

    R. Bernabei et al., Phys. Lett. B 450, 448 (1999)

    ADS  Article  Google Scholar 

  4. 4.

    P. Belli et al., Phys. Rev. D 61, 023512 (2000)

    ADS  Article  Google Scholar 

  5. 5.

    R. Bernabei et al., Phys. Lett. B 480, 23 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    R. Bernabei et al., Phys. Lett. B 509, 197 (2001)

    ADS  Article  Google Scholar 

  7. 7.

    R. Bernabei et al., Eur. Phys. J. C 23, 61 (2002)

    ADS  Article  Google Scholar 

  8. 8.

    P. Belli et al., Phys. Rev. D 66, 043503 (2002)

    ADS  Article  Google Scholar 

  9. 9.

    R. Bernabei et al., Nuovo Cimento A 112, 545 (1999)

    ADS  Article  Google Scholar 

  10. 10.

    R. Bernabei et al., Eur. Phys. J. C 18, 283 (2000)

    ADS  Article  Google Scholar 

  11. 11.

    R. Bernabei et al., Riv. Nuovo Cimento 26(1), 1–73 (2003)

    MathSciNet  Google Scholar 

  12. 12.

    R. Bernabei et al., Int. J. Mod. Phys. D 13, 2127 (2004)

    MATH  ADS  Article  Google Scholar 

  13. 13.

    R. Bernabei et al., Int. J. Mod. Phys. A 21, 1445 (2006)

    MATH  ADS  Article  Google Scholar 

  14. 14.

    R. Bernabei et al., Eur. Phys. J. C 47, 263 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    R. Bernabei et al., Int. J. Mod. Phys. A 22, 3155 (2007)

    ADS  Article  Google Scholar 

  16. 16.

    R. Bernabei et al., Eur. Phys. J. C 53, 205 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    R. Bernabei et al., Phys. Rev. D 77, 023506 (2008)

    ADS  Article  Google Scholar 

  18. 18.

    R. Bernabei et al., preprint ROM2F/2008/02. arXiv:0802.4336 [astro-ph], in publication on Mod. Phys. Lett. A

  19. 19.

    R. Bernabei et al., Phys. Lett. B 408, 439 (1997)

    ADS  Article  Google Scholar 

  20. 20.

    P. Belli et al., Phys. Lett. B 460, 236 (1999)

    ADS  Article  Google Scholar 

  21. 21.

    R. Bernabei et al., Phys. Rev. Lett. 83, 4918 (1999)

    ADS  Article  Google Scholar 

  22. 22.

    P. Belli et al., Phys. Rev. C 60, 065501 (1999)

    ADS  Article  Google Scholar 

  23. 23.

    R. Bernabei et al., Nuovo Cimento A 112, 1541 (1999)

    ADS  Google Scholar 

  24. 24.

    R. Bernabei et al., Phys. Lett. B 515, 6 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    F. Cappella et al., Eur. Phys. J. Direct C 14, 1 (2002)

    Google Scholar 

  26. 26.

    R. Bernabei et al., Eur. Phys. J. A 23, 7 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    R. Bernabei et al., Eur. Phys. J. A 24, 51 (2005)

    ADS  Article  Google Scholar 

  28. 28.

    R. Bernabei et al., Astropart. Phys. 4, 45 (1995)

    ADS  Article  Google Scholar 

  29. 29.

    R. Bernabei, in The Identification of Dark Matter (World Scientific, Singapore, 1997), p. 574

    Google Scholar 

  30. 30.

    P. Belli et al., Nuovo Cimento A 103, 767 (1990)

    ADS  Article  Google Scholar 

  31. 31.

    P. Belli et al., Astropart. Phys. 5, 217 (1996)

    ADS  Article  Google Scholar 

  32. 32.

    P. Belli et al., Nuovo Cimento C 19, 537 (1996)

    ADS  Article  Google Scholar 

  33. 33.

    P. Belli et al., Phys. Lett. B 387, 222 (1996); Phys. Lett. B 389, 783 (1996) (Erratum)

    ADS  Article  Google Scholar 

  34. 34.

    R. Bernabei et al., Phys. Lett. B 436, 379 (1998)

    ADS  Article  Google Scholar 

  35. 35.

    P. Belli et al., Phys. Lett. B 465, 315 (1999)

    ADS  Article  Google Scholar 

  36. 36.

    P. Belli et al., Phys. Rev. D 61, 117301 (2000)

    ADS  Article  Google Scholar 

  37. 37.

    R. Bernabei et al., New J. Phys. 2, 15 (2000) 1

    ADS  Article  Google Scholar 

  38. 38.

    R. Bernabei et al., Phys. Lett. B 493, 12 (2000)

    ADS  Article  Google Scholar 

  39. 39.

    R. Bernabei et al., Nucl. Instrum. Methods A 482, 728 (2002)

    ADS  Article  Google Scholar 

  40. 40.

    R. Bernabei et al., Eur. Phys. J. Direct C 11, 1 (2001)

    Google Scholar 

  41. 41.

    R. Bernabei et al., in Beyond the Desert 2003 (Springer, Berlin, 2003), p. 365

    Google Scholar 

  42. 42.

    R. Bernabei et al., Eur. Phys. J. A 27(s01), 35 (2006)

    ADS  Article  Google Scholar 

  43. 43.

    R. Bernabei et al., Phys. Lett. B 527, 182 (2002)

    ADS  Article  Google Scholar 

  44. 44.

    R. Bernabei et al., Phys. Lett. B 546, 23 (2002)

    ADS  Article  Google Scholar 

  45. 45.

    R. Bernabei et al., Nucl. Instrum. Methods A 555, 270 (2005)

    ADS  Article  Google Scholar 

  46. 46.

    R. Bernabei et al., Ukr. J. Phys. 51, 1037 (2006)

    Google Scholar 

  47. 47.

    P. Belli et al., Nucl. Phys. A 789, 15 (2007)

    ADS  Article  Google Scholar 

  48. 48.

    P. Belli et al., Phys. Rev. C 76, 064603 (2007)

    ADS  Article  Google Scholar 

  49. 49.

    R. Bernabei et al., Nuovo Cimento A 110, 189 (1997)

    ADS  Google Scholar 

  50. 50.

    R. Bernabei et al., Astropart. Phys. 7, 73 (1997)

    ADS  Article  Google Scholar 

  51. 51.

    P. Belli et al., Nucl. Phys. B 563, 97 (1999)

    ADS  Article  Google Scholar 

  52. 52.

    P. Belli et al., Astropart. Phys. 10, 115 (1999)

    ADS  Article  Google Scholar 

  53. 53.

    R. Bernabei et al., Nucl. Phys. A 705, 29 (2002)

    ADS  Article  Google Scholar 

  54. 54.

    P. Belli et al., Nucl. Instrum. Methods A 498, 352 (2003)

    ADS  Article  Google Scholar 

  55. 55.

    R. Cerulli et al., Nucl. Instum. Methods A 525, 535 (2004)

    ADS  Article  Google Scholar 

  56. 56.

    P. Belli et al., Phys. Lett. B 658, 193 (2008)

    ADS  Article  Google Scholar 

  57. 57.

    K.A. Drukier et al., Phys. Rev. D 33, 3495 (1986)

    ADS  Article  Google Scholar 

  58. 58.

    K. Freese et al., Phys. Rev. D 37, 3388 (1988)

    ADS  Article  Google Scholar 

  59. 59.

    P. Belli, R. Bernabei, C. Bacci, A. Incicchitti, R. Marcovaldi, D. Prosperi, DAMA proposal to INFN Scientific Committee II, 24 April 1990

  60. 60.

    M.W. Goodman, E. Witten, Phys. Rev. D 31, 3059 (1985)

    ADS  Article  Google Scholar 

  61. 61.

    W.H. Press, D.N. Spergel, Astrophys. J. 296, 679 (1985)

    ADS  Article  Google Scholar 

  62. 62.

    R.L. Gilliland et al., Astrophys. J. 306, 703 (1986)

    ADS  Article  Google Scholar 

  63. 63.

    K. Griest, Phys. Rev. D 38, 2357 (1988)

    ADS  Article  Google Scholar 

  64. 64.

    K. Griest, Phys. Rev. Lett. 61, 666 (1988)

    ADS  Article  Google Scholar 

  65. 65.

    R. Barbieri, M. Frigeni, G.F. Giudice, Nucl. Phys. B 313, 725 (1989)

    ADS  Article  Google Scholar 

  66. 66.

    G. Gelmini, P. Gondolo, E. Roulet, Nucl. Phys. B 351, 623 (1991)

    ADS  Article  Google Scholar 

  67. 67.

    A. Bottino, V. de Alfaro, N. Fornengo, G. Mignola, S. Scopel, Astropart. Phys. 2, 77 (1994)

    ADS  Article  Google Scholar 

  68. 68.

    D. Smith, N. Weiner, Phys. Rev. D 64, 043502 (2001)

    ADS  Article  Google Scholar 

  69. 69.

    D. Tucker-Smith, N. Weiner, Phys. Rev. D 72, 063509 (2005)

    ADS  Article  Google Scholar 

  70. 70.

    A. Bottino et al., Phys. Lett. B 402, 113 (1997)

    ADS  Article  Google Scholar 

  71. 71.

    A. Bottino et al., Phys. Lett. B 423, 109 (1998)

    ADS  Article  Google Scholar 

  72. 72.

    A. Bottino et al., Phys. Rev. D 59, 095004 (1999)

    ADS  Article  Google Scholar 

  73. 73.

    A. Bottino et al., Phys. Rev. D 59, 095003 (1999)

    ADS  Article  Google Scholar 

  74. 74.

    A. Bottino et al., Astropart. Phys. 10, 203 (1999)

    ADS  Article  Google Scholar 

  75. 75.

    A. Bottino et al., Astropart. Phys. 13, 215 (2000)

    ADS  Article  Google Scholar 

  76. 76.

    A. Bottino et al., Phys. Rev. D 62, 056006 (2000)

    ADS  Article  Google Scholar 

  77. 77.

    A. Bottino et al., Nucl. Phys. B 608, 461 (2001)

    ADS  Article  Google Scholar 

  78. 78.

    A. Bottino, F. Donato, N. Fornengo, S. Scopel, Phys. Rev. D 63, 125003 (2001)

    ADS  Article  Google Scholar 

  79. 79.

    A. Bottino et al., Phys. Rev. D 67, 063519 (2003)

    ADS  Article  Google Scholar 

  80. 80.

    A. Bottino et al., Phys. Rev. D 68, 043506 (2003)

    ADS  Article  Google Scholar 

  81. 81.

    A. Bottino et al., Phys. Rev. D 69, 037302 (2004)

    ADS  Article  Google Scholar 

  82. 82.

    T. Asaka et al., Phys. Rev. D 58, 023507 (1998)

    ADS  Article  Google Scholar 

  83. 83.

    T. Asaka et al., Phys. Rev. D 58, 083509 (1998)

    ADS  Article  Google Scholar 

  84. 84.

    R. Volkas, Prog. Part. Nucl. Phys. 48, 161 (2002)

    ADS  Article  Google Scholar 

  85. 85.

    R. Foot, hep-ph/0308254

  86. 86.

    K. Belotsky, D. Fargion, M. Khlopov, R.V. Konoplich, hep-ph/0411093

  87. 87.

    D. Hooper, L.T. Wang, Phys. Rev. D 70, 063506 (2004)

    ADS  Article  Google Scholar 

  88. 88.

    S. Mitra, Phys. Rev. D 71, 121302 (2005) (R)

    ADS  Article  Google Scholar 

  89. 89.

    C. Picciotto, M. Pospelov, Phys. Lett. B 605, 15 (2005)

    ADS  Article  Google Scholar 

  90. 90.

    M. Kawasaki, T. Yanagida, Phys. Lett. B 624, 162 (2005)

    ADS  Article  Google Scholar 

  91. 91.

    D.V. Ahluwalia-Khalilova, D. Grumiller, Phys. Rev. D 72, 067701 (2005)

    ADS  Article  Google Scholar 

  92. 92.

    D.V. Ahluwalia-Khalilova, D. Grumiller, J. Cosmol. Astropart. Phys. 07, 012 (2005)

    ADS  Article  Google Scholar 

  93. 93.

    J. Knodlseder et al., Astron. Astrophys. 441, 513 (2005)

    ADS  Article  Google Scholar 

  94. 94.

    J.M. Frére et al., arXiv:hep-ph/0610240

  95. 95.

    Y. Ascasibar, P. Jean, C. Boehm, J. Knoedlseder, Mon. Not. R. Astron. Soc. 368, 1695 (2006)

    ADS  Article  Google Scholar 

  96. 96.

    E.M. Drobyshevski et al., Astron. Astrophys. Trans. 26(4), 289 (2007)

    ADS  Article  Google Scholar 

  97. 97.

    E.M. Drobyshevski et al., arXiv:0704.0982

  98. 98.

    E.M. Drobyshevski et al., arXiv:0706.3095

  99. 99.

    D. Hooper et al., arXiv:0704.2558 [astro-ph]

  100. 100.

    C. Jacoby, S. Nussinov, J. High Energy Phys. 05, 017 (2007)

    ADS  Article  Google Scholar 

  101. 101.

    D.P. Finkbeiner, N. Weiner, Phys. Rev. D 76, 083519 (2007)

    ADS  Article  Google Scholar 

  102. 102.

    M. Pospelov, A. Ritz, Phys. Lett. B 651, 208 (2007)

    ADS  Article  Google Scholar 

  103. 103.

    P. Fayet, Phys. Rev. D 75, 115017 (2007)

    ADS  Article  Google Scholar 

  104. 104.

    A. Kusenko, AIP Conf. Proc. 917, 58 (2007)

    ADS  Article  Google Scholar 

  105. 105.

    A. Palazzo et al., Phys. Rev. D 76, 103511 (2007)

    ADS  Article  Google Scholar 

  106. 106.

    M. Shaposhnikov, Nucl. Phys. B 763, 49 (2007)

    MATH  ADS  MathSciNet  Article  Google Scholar 

  107. 107.

    M. Lemoine et al., Phys. Lett. B 645, 222 (2007)

    ADS  Article  Google Scholar 

  108. 108.

    C. Arina, N. Fornengo, arXiv:0709.4477

  109. 109.

    A. Bottino et al., Phys. Rev. D 77, 015002 (2008)

    ADS  Article  Google Scholar 

  110. 110.

    R. Bernabei et al., Nucl. Instrum. Methods A 592, 297 (2008)

    ADS  Article  Google Scholar 

  111. 111.

    W.H. Press, G.B. Rybicki, Astrophys. J. 338, 277 (1989)

    ADS  Article  Google Scholar 

  112. 112.

    J.D. Scargle, Astrophys. J. 263, 835 (1982)

    ADS  Article  Google Scholar 

  113. 113.

    F.S. Ling, P. Sikivie, S. Wick, Phys. Rev. D 70, 123503 (2004)

    ADS  Article  Google Scholar 

  114. 114.

    C.M., Lederer, V.S., Shirley (eds.), Table of Isotopes, 7th edn. (Wiley, New York, 1978)

  115. 115.

    P. Belli et al., Nuovo Cimento A 101, 959 (1989)

    ADS  Article  Google Scholar 

  116. 116.

    M. Cribier et al., Astropart. Phys. 4, 23 (1995)

    ADS  Article  Google Scholar 

  117. 117.

    A. Rindi et al., LNGS report LNF-88/01(P) (1988)

  118. 118.

    F. Arneodo et al., Nuovo Cimento A 8, 819 (1999)

    ADS  Google Scholar 

  119. 119.

    H. Wulandari et al., Astropart. Phys. 22, 313 (2004)

    ADS  Article  Google Scholar 

  120. 120.

    ICARUS Collaboration, internal report TM03-01

  121. 121.

    A. Borio di Tigliole et al., Europhys. Lett. 67, 1045 (2004)

    ADS  Article  Google Scholar 

  122. 122.

    M. Wojcik, Nucl. Instrum. Methods B 61, 8 (1991)

    ADS  Article  Google Scholar 

  123. 123.

    M. Ambrosio et al., Astropart. Phys. 7, 109 (1997)

    ADS  Article  Google Scholar 

  124. 124.

    M. Aglietta et al., Nuovo Cimento C 12, 467 (1987)

    ADS  Article  Google Scholar 

  125. 125.

    M. Aglietta et al., hep-ex/9905047

  126. 126.

    P. Belli et al., Phys. Rev. D 66, 043503 (2002)

    ADS  Article  Google Scholar 

  127. 127.

    R. Bernabei, DAMA Colloboration, A. Bottino, Nature 449, 24 (2007)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Bernabei.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Bernabei, R., Belli, P., Cappella, F. et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008). https://doi.org/10.1140/epjc/s10052-008-0662-y

Download citation

Keywords

  • Dark Matter
  • Radon
  • Annual Cycle
  • Modulation Amplitude
  • Dark Matter Particle