Advertisement

Unitarity bounds for gauged axionic interactions and the Green–Schwarz mechanism

  • C. CorianòEmail author
  • M. Guzzi
  • S. Morelli
Regular Article - Theoretical Physics

Abstract

We analyze the effective actions of anomalous models in which a four-dimensional version of the Green–Schwarz mechanism is invoked for the cancellation of the anomalies, and we compare it with those models in which gauge invariance is restored by the presence of a Wess–Zumino term. Some issues concerning an apparent violation of unitarity of the mechanism, which requires Dolgov–Zakharov poles, are carefully examined, using a class of amplitudes studied in the past by Bouchiat–Iliopoulos–Meyer (BIM), and elaborating on previous studies. In the Wess–Zumino case we determine explicitly the unitarity bound using a realistic model of intersecting branes (the Madrid model) by studying the corresponding BIM amplitudes. This is shown to depend significantly on the Stückelberg mass and on the coupling of the extra anomalous gauge bosons and allows one to identify standard-model-like regions (which are anomaly-free) from regions where the growth of certain amplitudes is dominated by the anomaly, separated by an inflection point, which could be studied at the LHC. The bound can even be around 5–10 TeV for a Z’ mass around 1 TeV and varies sensitively with the anomalous coupling. The results for the WZ case are quite general and apply to all the models in which an axion-like interaction is introduced as a generalization of the Peccei–Quinn mechanism, with a gauged axion.

Keywords

Gauge Boson Ward Identity Axionic Interaction Chiral Limit Anomalous Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971)ADSMathSciNetGoogle Scholar
  2. 2.
    M.B. Green, J.H. Schwarz, Phys. Lett. B 149, 117 (1984)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    M.B. Green, J.H. Schwarz, Nucl. Phys. B 255, 93 (1985)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)zbMATHGoogle Scholar
  5. 5.
    J. Preskill, Ann. Phys. 210, 323 (1991)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    C. Corianò, N. Irges, Phys. Lett. B 651, 298 (2007)CrossRefADSGoogle Scholar
  7. 7.
    C. Adam, Phys. Rev. D 56, 5135 (1997)CrossRefADSGoogle Scholar
  8. 8.
    C. Corianò, N. Irges, E. Kiritsis, Nucl. Phys. B 746, 77 (2006)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    N. Irges, S. Lavignac, P. Ramond, Phys. Rev. D 58, 035003 (1998)CrossRefADSGoogle Scholar
  10. 10.
    E. Kiritsis, Fortschr. Phys. 52, 200 (2004)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    I. Antoniadis, E. Kiritsis, J. Rizos, T. Tomaras, Nucl. Phys. B 660, 81 (2003)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    I. Antoniadis, E. Kiritsis, T. Tomaras, Phys. Lett. B 486, 186 (2000)CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    C. Corianò, N. Irges, S. Morelli, Nucl. Phys. B 789, 133 (2008)CrossRefADSzbMATHGoogle Scholar
  14. 14.
    R. Armillis, C. Corianò, M. Guzzi, JHEP 05, 015 (2008)CrossRefADSGoogle Scholar
  15. 15.
    C. Corianò, N. Irges, S. Morelli, JHEP 0707, 008 (2007)CrossRefADSGoogle Scholar
  16. 16.
    L.E. Ibáñez, F. Marchesano, R. Rabadán, JHEP 0111, 002 (2001)Google Scholar
  17. 17.
    L.E. Ibáñez, R. Rabadán, A. Uranga, Nucl. Phys. B 542, 112 (1999)CrossRefADSzbMATHGoogle Scholar
  18. 18.
    A. Andrianov, A. Bassetto, R. Soldati, Phys. Rev. Lett. 63, 1554 (1989)CrossRefADSGoogle Scholar
  19. 19.
    A. Andrianov, A. Bassetto, R. Soldati, Phys. Rev. D 44, 2602 (1991)CrossRefADSGoogle Scholar
  20. 20.
    A. Andrianov, A. Bassetto, R. Soldati, Phys. Rev. D 47, 4801 (1993)CrossRefADSGoogle Scholar
  21. 21.
    C. Fosco, R. Montemayor, Phys. Rev. D 47, 4798 (1993)CrossRefADSGoogle Scholar
  22. 22.
    R.D. Peccei, H.R. Quinn, Phys. Rev. D 16, 1791 (1977)CrossRefADSGoogle Scholar
  23. 23.
    M. Srednicki, in: Minneapolis 2002, Continuous Advances in QCD, p. 509 [hep-th/0210172]Google Scholar
  24. 24.
    C. Bouchiat, J. Iliopoulos, P. Meyer, Phys. Lett. B 38, 519 (1972)ADSCrossRefGoogle Scholar
  25. 25.
    P. Federbush, hep-th/9606110Google Scholar
  26. 26.
    P. Anastasopoulos, M. Bianchi, E. Dudas, E. Kiritsis, JHEP 0611, 057 (2006)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    A.D. Dolgov, V.I. Zakharov, Nucl. Phys. B 27, 525 (1971)CrossRefADSGoogle Scholar
  28. 28.
    L. Rosenberg, Phys. Rev. 129, 2786 (1963)CrossRefADSzbMATHGoogle Scholar
  29. 29.
    A.R. White, private communication and work in preparationGoogle Scholar
  30. 30.
    B.L. Ioffe, Int. J. Mod. Phys. A 21, 6249 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    N.N. Achasov, Phys. Lett. B 287, 213 (1992)CrossRefADSGoogle Scholar
  32. 32.
    W.-M. Yao et al., J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
  33. 33.
    Particle Data Group, http://pdg.lbl.gov/Google Scholar
  34. 34.
    A. De Angelis, O. Mansutti, M. Roncadelli, Phys. Rev. D 76, 121301 (2007)CrossRefADSGoogle Scholar
  35. 35.
    A. De Angelis, O. Mansutti, M. Roncadelli, Phys. Lett. B 659, 847 (2008)CrossRefADSGoogle Scholar
  36. 36.
    D.M. Ghilencea, L.E. Ibáñez, N. Irges, F. Quevedo, JHEP 0208, 016 (2002)CrossRefADSGoogle Scholar
  37. 37.
    A. Cafarella, C. Corianò, M. Guzzi, 0803.0462 [hep-ph]Google Scholar
  38. 38.
    A. Cafarella, C. Corianò, M. Guzzi, http://www.le.infn.it/candia/Google Scholar
  39. 39.
    P. Langacker, 0801.1345 [hep-ph]Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità del Salento and INFN Sezione di LecceLecceItaly
  2. 2.Department of Physics and Institute of Plasma PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations