Advertisement

The European Physical Journal C

, Volume 55, Issue 1, pp 119–124 | Cite as

Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant

  • J. Lukierski
  • P.C. Stichel
  • W.J. ZakrzewskiEmail author
Regular Article - Theoretical Physics

Abstract

By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton–Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.

Keywords

Central Charge Cosmological Constant Poisson Bracket Central Extension Casimir Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Phys. Lett. B 650, 203 (2007) [hep-th/0702179]CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    H. Bacry, J.M. Levy-Leblond, J. Math. Phys. 9, 1605 (1968)CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    J. Derome, J.G. Dubois, Nuovo Cim. B 9, 351 (1972)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    J.F. Carineña, M.A. del Olmo, M. Santander, J. Phys. A 14, 1 (1981)CrossRefADSGoogle Scholar
  5. 5.
    J. Negro, M.A. del Olmo, A. Rodriguez-Marco, J. Math. Phys. 38, 3786 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    J. Negro, M.A. del Olmo, A. Rodriguez-Marco, J. Math. Phys. 38, 3810 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    J. Arratia, M.A. Martin, M.A. del Olmo, math-phys/9903013Google Scholar
  8. 8.
    R. Aldrovandi, A.L. Barbosa, L.C.B. Crispino, Class. Quantum Grav. 16, 495 (1995)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Y.H. Gao, hep-th/0107067Google Scholar
  10. 10.
    Y. Tian, H.-Y. Guo, C.-G. Huang, B. Zhou, Phys. Rev. D 71, 044030 (2005)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    G.W. Gibbons, C.E. Patricot, Class. Quantum Grav. 20, 522 (2003) [hep-th/0308200]MathSciNetGoogle Scholar
  12. 12.
    P.D. Alvarez, J. Gomis, K. Kamimura, M.S. Plyushchay, Ann. Phys. 322, 1556 (2007) [hep-th/0702014]CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    F.J. Herranz, M. Santander, math-phys/0612059Google Scholar
  14. 14.
    J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Phys. Lett. A 357, 1 (2006) [hep-th/0511259]CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Ann. Phys. 260, 224 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    R. Casalbuoni, J. Gomis, G. Longhi, 0709.4385 [ph-th]Google Scholar
  17. 17.
    L. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1962 (1988)CrossRefMathSciNetGoogle Scholar
  18. 18.
    R. Jackiw, In: Constraints Theory and Quantization Methods, ed. by F. Colomo et al., (World Scientific, Singapore, 1994) p. 163Google Scholar
  19. 19.
    P.A. Horvathy, M.S. Plyushchay, JHEP 0206, 033 (2002)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    A. Pais, G.H. Uhlenbeck, Phys. Rev. 79, 145 (1959)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    P.D. Mannheim, hep-th/0608154Google Scholar
  22. 22.
    C.M. Bender, P.D. Mannheim, 0706.0207 [hep-th]Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2008

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of WrocławWrocławPoland
  2. 2.Department of Theoretical PhysicsUniversity of ValenciaBurjassot (Valencia)Spain
  3. 3.BielefeldGermany
  4. 4.Department of Mathematical SciencesUniversity of DurhamDurhamUK

Personalised recommendations