Advertisement

The European Physical Journal C

, Volume 52, Issue 1, pp 19–27 | Cite as

Pulse shapes from electron and photon induced events in segmented high-purity germanium detectors

  • I. Abt
  • A. Caldwell
  • K. KröningerEmail author
  • J. Liu
  • X. Liu
  • B. Majorovits
Regular Article - Experimental Physics

Abstract

Experiments built to search for neutrinoless double beta-decay are limited in their sensitivity not only by the exposure but also by the amount of background encountered. Radioactive isotopes in the surrounding of the detectors which emit gamma-radiation are expected to be a significant source of background in the GERmanium Detector Array, GERDA. Methods to select electron induced events and discriminate against photon induced events inside a germanium detector are presented in this paper. The methods are based on the analysis of the time structure of the detector response. Data were taken with a segmented GERDA prototype detector. It is shown that the analysis of the time response of the detector can be used to distinguish multiply scattered photons from electrons.

Keywords

Pulse Shape Monte Carlo Data Pulse Shape Analysis Library Method Double Escape Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GERDA Collaboration, S. Schönert et al., Nucl. Phys. Proc. Suppl. 145, 242 (2005)CrossRefADSGoogle Scholar
  2. 2.
    J. Simpson, J. Phys. G 31, S1801 (2005)CrossRefGoogle Scholar
  3. 3.
    K. Vetter et al., Nucl. Instrum. Methods A 452, 105 (2000)CrossRefADSGoogle Scholar
  4. 4.
    J. Hellmig, H.V. Klapdor-Kleingrothaus, Nucl. Instrum. Methods A 455, 638 (2000)CrossRefADSGoogle Scholar
  5. 5.
    B. Majorovits, H.V. Klapdor-Kleingrothaus, Eur. Phys. J. A 6, 463 (1999) [arXiv:hep-ex/9911001]CrossRefADSGoogle Scholar
  6. 6.
    D. Gonzalez et al., Nucl. Instrum. Methods A 515, 634 (2003) [arXiv:hep-ex/0302018]CrossRefADSGoogle Scholar
  7. 7.
    C.E. Aalseth, PhD Thesis, South Carolina University, UMI-30-06000Google Scholar
  8. 8.
    S.R. Elliott, V.M. Gehman, K. Kazkaz, D.M. Mei, A.R. Young, Nucl. Instrum. Methods A 558, 504 (2006) [arXiv:nucl-ex/0509026]CrossRefADSGoogle Scholar
  9. 9.
    I. Abt et al., arXiv:nucl-ex/0701005Google Scholar
  10. 10.
    I. Abt et al., Nucl. Instrum. Methods A 577, 574 [arXiv:nucl-ex/0701004]Google Scholar
  11. 11.
    GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)CrossRefADSGoogle Scholar
  12. 12.
    M. Bauer et al., J. Phys.: Conf. Ser. 39, 362 (2006)CrossRefADSGoogle Scholar
  13. 13.
    GERDA Collaboration, I. Abt et al., Nucl. Instrum. Methods A 570, 479 (2007)CrossRefADSGoogle Scholar
  14. 14.
    J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation (Addison Wesley, New York, 1991)Google Scholar
  15. 15.
    H.J. Ritter, T.M. Martinetz, K.J. Schulten, Neuronale Netze (Addison Wesley, New York, 1990)Google Scholar
  16. 16.
    C.G. Broyden, J. Inst. Math. App. 6, 222 (1970)zbMATHCrossRefGoogle Scholar
  17. 17.
    R. Fletcher, Comput. J. 13, 317 (1970)zbMATHCrossRefGoogle Scholar
  18. 18.
    D. Goldfarb, Math. Comput. 24, 23 (1970)zbMATHCrossRefGoogle Scholar
  19. 19.
    D.F. Shanno, Math. Comput. 24, 647 (1970)CrossRefGoogle Scholar
  20. 20.
    D.F. Shanno, J. Optim. Theor. App. 46, 87 (1985)zbMATHCrossRefGoogle Scholar
  21. 21.
    I. Abt et al., to be published [arXiv:0708.0917]Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  • I. Abt
    • 1
  • A. Caldwell
    • 1
  • K. Kröninger
    • 1
    Email author
  • J. Liu
    • 1
  • X. Liu
    • 1
  • B. Majorovits
    • 1
  1. 1.Max-Planck-Institut für PhysikMunichGermany

Personalised recommendations