Advertisement

Spin analysis of supersymmetric particles

  • S.Y. ChoiEmail author
  • K. Hagiwara
  • H.-U. Martyn
  • K. Mawatari
  • P.M. Zerwas
Regular Article - Experimental Physics

Abstract

The spin of supersymmetric particles can be determined at e+e- colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles – smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e+e- collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza–Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e+e- collider.

Keywords

Angular Distribution Pair Production Supersymmetric Particle Initial State Radiation Threshold Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    J. Wess, B. Zumino, Phys. Lett. B 49, 52 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    H.P. Nilles, Phys. Rep. 110, 1 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    D.J.H. Chung, L.L. Everett, G.L. Kane, S.F. King, J. Lykken, L.-T. Wang, Phys. Rep. 407, 1 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    T. Appelquist, H.C. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001) [arXiv:hep-ph/0012100]ADSCrossRefGoogle Scholar
  7. 7.
    H.C. Cheng, K.T. Matchev, M. Schmaltz, Phys. Rev. D 66, 036005 (2002) [arXiv:hep-ph/0204342]ADSCrossRefGoogle Scholar
  8. 8.
    W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51 (1997) [arXiv:hep-ph/9610490]ADSCrossRefGoogle Scholar
  9. 9.
    LHC/LC Study Group, G. Weiglein et al., Phys. Rep. 426, 47 (2006) [arXiv:hep-ph/0410364]ADSCrossRefGoogle Scholar
  10. 10.
    A. Datta, K. Kong, K.T. Matchev, Phys. Rev. D 72, 096006 (2005) [arXiv:hep-ph/0509246]ADSCrossRefGoogle Scholar
  11. 11.
    A. Datta, K. Kong, K.T. Matchev, Phys. Rev. D 72, 119901 (2005) [Erratum]ADSCrossRefGoogle Scholar
  12. 12.
    A.J. Barr, Phys. Lett. B 596, 205 (2004) [arXiv:hep-ph/0405052]ADSCrossRefGoogle Scholar
  13. 13.
    A.J. Barr, JHEP 0602, 042 (2006) [arXiv:hep-ph/0511115]ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Smillie, B.R. Webber, JHEP 0510, 069 (2005) [arXiv:hep-ph/0507170]ADSCrossRefGoogle Scholar
  15. 15.
    C. Athanasiou, C.G. Lester, J.M. Smillie, B.R. Webber, JHEP 0608, 055 (2006) [arXiv:hep-ph/0605286]ADSCrossRefGoogle Scholar
  16. 16.
    S.Y. Choi, K. Hagiwara, Y.G. Kim, K. Mawatari, P.M. Zerwas, Phys. Lett. B 648, 43 (2006) [arXiv:hep-ph/0612237]Google Scholar
  17. 17.
    D.J. Miller, S.Y. Choi, B. Eberle, M.M. Muhlleitner, P.M. Zerwas, Phys. Lett. B 505, 149 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    M.T. Dova, P. Garcia-Abia, W. Lohmann, LC-PHSM-2001-055Google Scholar
  19. 19.
    H.-U. Martyn, LC-PHSM-2003-07, arXiv:hep-ph/0302024, see also [21, 22, 23, 24, 25]Google Scholar
  20. 20.
    M. Battaglia, A. Datta, A. De Roeck, K. Kong, K.T. Matchev, JHEP 0507, 033 (2005) [arXiv:hep-ph/0502041]ADSCrossRefGoogle Scholar
  21. 21.
    ECFA/DESY LC Physics Working Group, E. Accomando et al., Phys. Rep. 299, 1 (1998) [arXiv:hep-ph/9705442]CrossRefGoogle Scholar
  22. 22.
    ECFA/DESY LC Physics Working Group, J.A. Aguilar-Saavedra et al., TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider, ed. by R.-D. Heuer, D. Miller, F. Richard, P.M. Zerwas, arXiv:hep-ph/0106315Google Scholar
  23. 23.
    American Linear Collider Working Group, T. Abe et al., Linear collider physics resource book for Snowmass 2001. 4: Theoretical, in: Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), ed. by N. Graf, arXiv:hep-ex/0106058Google Scholar
  24. 24.
    ACFA Linear Collider Working Group, K. Abe et al., arXiv:hep-ph/0109166Google Scholar
  25. 25.
    W. Kilian, P.M. Zerwas, arXiv:hep-ph/0601217Google Scholar
  26. 26.
    CLIC Physics Working Group, E. Accomando et al., arXiv:hep-ph/0412251Google Scholar
  27. 27.
    A. Freitas, D.J. Miller, P.M. Zerwas, Eur. Phys. J. C 21, 361 (2001) [arXiv:hep-ph/0106198]ADSCrossRefGoogle Scholar
  28. 28.
    A. Freitas, A. von Manteuffel, P.M. Zerwas, Eur. Phys. J. C 34, 487 (2004) [arXiv:hep-ph/0310182]ADSCrossRefGoogle Scholar
  29. 29.
    A. Freitas, A. von Manteuffel, P.M. Zerwas, Eur. Phys. J. C 40, 435 (2005) [arXiv:hep-ph/0408341]ADSCrossRefGoogle Scholar
  30. 30.
    J.A. Aguilar-Saavedra et al., Eur. Phys. J. C 46, 43 (2006) [arXiv:hep-ph/0511344]ADSCrossRefGoogle Scholar
  31. 31.
    S. Ferrara, M. Porrati, V.L. Telegdi, Phys. Rev. D 46, 3529 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    S.U. Chung, Phys. Rev. D 57, 431 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    S.Z. Huang, T.N. Ruan, N. Wu, Z.P. Zheng, Eur. Phys. J. C 26, 609 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    M. Nowakowski, E.A. Paschos, J.M. Rodriguez, Eur. J. Phys. 26, 545 (2005) [arXiv:physics/0402058]CrossRefGoogle Scholar
  35. 35.
    L.P.S. Singh, C.R. Hagen, Phys. Rev. D 9, 898 (1974)ADSCrossRefGoogle Scholar
  36. 36.
    L.P.S. Singh, C.R. Hagen, Phys. Rev. D 9, 910 (1974)ADSCrossRefGoogle Scholar
  37. 37.
    K. Moenig, Linear Collider Note LC-PHSM-2000-060Google Scholar
  38. 38.
    F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, arXiv:hep-ph/0312045Google Scholar
  39. 39.
    T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, E. Norrbin, Comput. Phys. Commun. 135, 238 (2001) [arXiv:hep-ph/0010017]ADSCrossRefGoogle Scholar
  40. 40.
    T. Ohl, Comput. Phys. Commun. 101, 269 (1997) [arXiv:hep-ph/9607454]ADSCrossRefGoogle Scholar
  41. 41.
    TESLA Technical Design Report, DESY 2001-011, TESLA Technical Design Report Part IV: A Detector for TESLA, ed. by T. Behnke, S. Bertolucci, R.-D. Heuer, R. SettlesGoogle Scholar
  42. 42.
    M. Pohl, H.J. Schreiber, DESY-02-061, arXiv:hep-ex/0206009Google Scholar
  43. 43.
    H.-U. Martyn, G.A. Blair, arXiv:hep-ph/9910416Google Scholar
  44. 44.
    H.-U. Martyn, arXiv:hep-ph/0406123Google Scholar
  45. 45.
    S.T. Boogert, D.J. Miller, arXiv:hep-ex/0211021, and references quoted thereinGoogle Scholar
  46. 46.
    H.-U. Martyn, arXiv:hep-ph/0002290Google Scholar
  47. 47.
    A. Freitas, H.U. Martyn, U. Nauenberg, P.M. Zerwas, arXiv:hep-ph/0409129Google Scholar
  48. 48.
    G. Moortgat-Pick et al., arXiv:hep-ph/0507011Google Scholar
  49. 49.
    S.Y. Choi, J. Kalinowski, G. Moortgat-Pick, P.M. Zerwas, Eur. Phys. J. C 22, 563 (2001) [arXiv:hep-ph/0108117]ADSCrossRefGoogle Scholar
  50. 50.
    S.Y. Choi, J. Kalinowski, G. Moortgat-Pick, P.M. Zerwas, Eur. Phys. J. C 23, 769 (2002) [Addendum]CrossRefGoogle Scholar
  51. 51.
    L.M. Sehgal, P.M. Zerwas, Nucl. Phys. B 183, 417 (1981)ADSCrossRefGoogle Scholar
  52. 52.
    B.C. Allanach et al., in: Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), ed. by N. Graf, Eur. Phys. J. C 25, 113 (2002) [eConf C010630 (2001) P125] [arXiv:hep-ph/0202233]Google Scholar
  53. 53.
    N. Ghodbane, H.-U. Martyn, in: Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), ed. by N. Graf, arXiv:hep-ph/0201233Google Scholar
  54. 54.
    S.Y. Choi, M. Drees, J. Song, JHEP 0609, 064 (2006) [arXiv:hep-ph/0602131]ADSCrossRefGoogle Scholar
  55. 55.
    S.Y. Choi, A. Djouadi, M. Guchait, J. Kalinowski, H.S. Song, P.M. Zerwas, Eur. Phys. J. C 14, 535 (2000) [arXiv:hep-ph/0002033]ADSCrossRefGoogle Scholar
  56. 56.
    S.Y. Choi, M. Guchait, J. Kalinowski, P.M. Zerwas, Phys. Lett. B 479, 235 (2000) [arXiv:hep-ph/0001175]ADSCrossRefGoogle Scholar
  57. 57.
    W. Oller, H. Eberl, W. Majerotto, Phys. Rev. D 71, 115002 (2005) [arXiv:hep-ph/0504109]ADSCrossRefGoogle Scholar
  58. 58.
    W. Oller, H. Eberl, W. Majerotto, Phys. Lett. B 590, 273 (2004) [arXiv:hep-ph/0402134]ADSCrossRefGoogle Scholar
  59. 59.
    T. Fritzsche, W. Hollik, Nucl. Phys. Proc. Suppl. 135, 102 (2004) [arXiv:hep-ph/0407095]ADSCrossRefGoogle Scholar
  60. 60.
    M.A. Diaz, S.F. King, D.A. Ross, Phys. Rev. D 64, 017701 (2001) [arXiv:hep-ph/0008117]ADSCrossRefGoogle Scholar
  61. 61.
    M.A. Diaz, D.A. Ross, JHEP 0106, 001 (2001) [arXiv:hep-ph/0103309]ADSCrossRefGoogle Scholar
  62. 62.
    F. Boudjema, C. Hamzaoui, Phys. Rev. D 43, 3748 (1991)ADSCrossRefGoogle Scholar
  63. 63.
    S.Y. Choi, Phys. Rev. D 69, 096003 (2004) [arXiv:hep-ph/0308060]ADSCrossRefGoogle Scholar
  64. 64.
    W. Alles, C. Boyer, A.J. Buras, Nucl. Phys. B 119, 125 (1977)ADSCrossRefGoogle Scholar
  65. 65.
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987)ADSCrossRefGoogle Scholar
  66. 66.
    LARGE DETECTOR CONCEPT working group, http://ilcdc.orgGoogle Scholar
  67. 67.
    S.Y. Choi, A. Djouadi, H.K. Dreiner, J. Kalinowski, P.M. Zerwas, Eur. Phys. J. C 7, 123 (1999) [arXiv:hep-ph/9806279]ADSGoogle Scholar
  68. 68.
    A. Bartl, H. Fraas, O. Kittel, W. Majerotto, Eur. Phys. J. C 36, 233 (2004) [arXiv:hep-ph/0402016]ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  • S.Y. Choi
    • 1
    • 2
    Email author
  • K. Hagiwara
    • 3
  • H.-U. Martyn
    • 1
    • 4
  • K. Mawatari
    • 5
  • P.M. Zerwas
    • 1
    • 3
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.Physics Department and RIPCChonbuk National UniversityJeonjuKorea
  3. 3.Theory DivisionKEKIbarakiJapan
  4. 4.I. Physikalisches InstitutRWTH AachenAachenGermany
  5. 5.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations