Advertisement

The European Physical Journal C

, Volume 52, Issue 1, pp 83–92 | Cite as

Electroweak radiative corrections to the three channels of the process f11HA→0

  • D. Bardin
  • S. BondarenkoEmail author
  • L. Kalinovskaya
  • G. Nanava
  • L. Rumyantsev
Regular Article - Theoretical Physics

Abstract

In this paper we describe the implementation of the complete next-to-leading order electroweak calculations for the various cross channels of the process f11HA→0 in the framework of the SANC system. Here A stands for a photon and f1 for a fermion whose mass is neglected everywhere besides arguments of logarithmic functions. The symbol →0 means that all 4-momenta of the external particles flow inwards. The derived one-loop scalar form factors can be used for any cross channel after an appropriate permutation of their arguments s,t,u. We present the complete analytical results for the covariant and helicity amplitudes for three cross channels: f11→Hγ, H→f11γ and f1γ→f1H. For checking of the correctness of the results first of all we observe the independence of the scalar form factors on the gauge parameters and the validity of the Ward identity (external photon transversality), and, secondly, we make an extensive comparison of our numerical results with other independent calculations.

Keywords

Higgs Boson Invariant Mass Decay Channel Ward Identity Helicity Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Ankenbrandt et al., Phys. Rev. ST Accel. Beams 2, 081001 (1999)CrossRefADSGoogle Scholar
  2. 2.
    M. Alsharo’a et al., Phys. Rev. ST Accel. Beams 6, 081001 (2003)CrossRefADSGoogle Scholar
  3. 3.
    T. Abe et al., SLAC-R-507 (2001) hep-ex/0106055-58Google Scholar
  4. 4.
    ATLAS Collaboration, CERN-LHCC/99-14 (1999)Google Scholar
  5. 5.
    A. Barroso, J. Pulido, J.C. Romao, Nucl. Phys. B 267, 509 (1986)CrossRefADSGoogle Scholar
  6. 6.
    A. Abbasabadi, D. Bowser-Chao, D.A. Dicus, W.W. Repko, Phys. Rev. D 52, 3919 (1995)CrossRefADSGoogle Scholar
  7. 7.
    A. Djouadi, V. Driesen, W. Hollik, J. Rosiek, Nucl. Phys. B 491, 6 (1997)CrossRefGoogle Scholar
  8. 8.
    E. Gabrielli, V.A. Ilyin, B. Mele, Phys. Rev. D 56, 5945 (1997)CrossRefADSGoogle Scholar
  9. 9.
    E. Gabrielli, V.A. Ilyin, B. Mele, Phys. Rev. D 58, 119902 (1998) [Erratum]CrossRefADSGoogle Scholar
  10. 10.
    A.T. Banin, I.F. Ginzburg, I.P. Ivanov, Phys. Rev. D 59, 115001 (1999)CrossRefADSGoogle Scholar
  11. 11.
    A. Andonov et al., Comput. Phys. Commun. 174, 481 (2006)CrossRefADSGoogle Scholar
  12. 12.
    SANC server, Dubna, http://sanc.jinr.ruGoogle Scholar
  13. 13.
    SANC server, CERN, http://pcphsanc.cern.chGoogle Scholar
  14. 14.
    CompHEP Collaboration, E. Boos et al., Nucl. Instrum. Methods A 534, 250 (2004)CrossRefADSGoogle Scholar
  15. 15.
    F. Yuasa et al., Prog. Theor. Phys. Suppl. 138, 1 (2000)Google Scholar
  16. 16.
    T. Sjostrand, S. Mrenna, P. Skands, JHEP 0605, 026 (2006)CrossRefADSGoogle Scholar
  17. 17.
    D. Bardin, S. Bondarenko, L. Kalinovskaya, G. Nanava, L. Rumyantsev, W. von Schlippe, SANCnews: Sector ffbb, hep-ph/0506120Google Scholar
  18. 18.
    G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)CrossRefADSGoogle Scholar
  19. 19.
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025Google Scholar
  20. 20.
    T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  • D. Bardin
    • 1
  • S. Bondarenko
    • 2
    Email author
  • L. Kalinovskaya
    • 1
  • G. Nanava
    • 3
  • L. Rumyantsev
    • 1
  1. 1.Dzhelepov Laboratory for Nuclear ProblemsJINRDubnaRussia
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia
  3. 3.IFJPANKrakówPoland

Personalised recommendations