Advertisement

The European Physical Journal C

, Volume 51, Issue 4, pp 899–912 | Cite as

The microcanonical ensemble of the ideal relativistic quantum gas

  • F. BecattiniEmail author
  • L. Ferroni
Regular Article - Theoretical Physics

Abstract

We derive the microcanonical partition function of the ideal relativistic quantum gas of spinless bosons in a quantum field framework as an expansion over fixed multiplicities. Our calculation generalizes well known expressions in the literature in that it does not introduce any large-volume approximation and it is valid at any volume. We discuss the issues concerned with the definition of the microcanonical ensemble for a free quantum field at volumes comparable with the Compton wavelength and provide a consistent prescription for calculating the microcanonical partition function that is finite at finite volume and yielding the correct thermodynamic limit. Besides an immaterial overall factor, the expression obtained turns out to be the same as in the non-relativistic multi-particle approach. This work is an introduction to the derivation of the most general expression of the microcanonical partition function fixing the maximal set of observables of the Poincaré group.

Keywords

Thermodynamic Limit Region Versus Particle Multiplicity Microcanonical Ensemble Compton Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Chodos et al., Phys. Rev. D 9, 3471 (1974)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    V.V. Begun, M. Gazdzicki, M.I. Gorenstein, O.S. Zozulya, Phys. Rev. C 70, 034901 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    V.V. Begun, M. Gazdzicki, M.I. Gorenstein, M. Hauer, V.P. Konchakovski, B. Lungwitz, arXiv:nucl-th/0611075Google Scholar
  4. 4.
    M. Chaichian, R. Hagedorn, M. Hayashi, Nucl. Phys. B 92, 445 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    F. Becattini, L. Ferroni, Eur. Phys. J. C 35, 243 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    F. Becattini, J. Phys. Conf. Ser. 5, 175 (2005)CrossRefGoogle Scholar
  7. 7.
    E.M. Lifshitz, L.P. Pitaevskii, V.B. Berestetskii, Quantum Electrodynamics (Butterworth-Heinemann, Oxford, 1971, 1999)Google Scholar
  8. 8.
    A.E. Strominger, Ann. Phys. 146, 419 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    A. Iwazaki, Phys. Lett. B 141, 342 (1984)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    J.D. Brown, J.W. York, Phys. Rev. D 47, 1420 (1993)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    F. Becattini, L. Ferroni, The microcanonical ensemble of the ideal relativistic quantum gas with angular momentum conservation, in preparationGoogle Scholar
  12. 12.
    B. Touschek, Nuovo Cim. B 58, 295 (1968)ADSCrossRefGoogle Scholar
  13. 13.
    D.E. Miller, F. Karsch, Phys. Rev. D 24, 2564 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    S. Weinberg, The Quantum Theory Of Fields, Vol. 1 (Cambridge University Press, Cambridg, 1995)CrossRefGoogle Scholar
  15. 15.
    M. Stone, The Physics of Quantum Fields (Springer, New York, 1999)Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  1. 1.Università di Firenze and INFN Sezione di FirenzeFirenzeItaly

Personalised recommendations