The European Physical Journal C

, Volume 51, Issue 4, pp 913–918 | Cite as

On the violation of the holographic viscosity versus entropy KSS bound in non-relativistic systems

  • A. Dobado
  • F.J. Llanes-EstradaEmail author
Regular Article - Theoretical Physics


A computation of the quotient of shear viscosity and entropy density, or the Kovtun, Son and Starinets (KSS) number η/s, is performed in the non-relativistic and classical regime, first in chiral perturbation theory, and then in the SO(g+1)/SO(g) non-linear sigma model in the large g limit. Both are field theories stemming from a renormalizable sigma model, but, in spite of that, we explicitly calculate how one avoids the KSS bound by increasing the number of degenerate pions sufficiently. However, we argue that particle production could still keep the validity of the KSS bound in the weak sense. We also show how a large number of molecular isomers (which we estimate in terms of simple molecular properties) could avoid the bound in the strong sense. This might be possible with carbon based molecules. We finally argue that a measurement of η/s in heavy-ion collisions might be turned into an upper bound on the number of hadron resonances.


Fullerene Sigma Model Entropy Density Chiral Perturbation Theory Strange Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Kovtun, D.T. Son, A.O. Starinets, JHEP 0310, 064 (2003) [hep-th/0309213]ADSCrossRefGoogle Scholar
  2. 2.
    P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005) [hep-th/0405231]ADSCrossRefGoogle Scholar
  3. 3.
    S. Gavin, M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006) [nucl-th/0606061]ADSCrossRefGoogle Scholar
  4. 4.
    T. Schafer, cond-mat/0701251Google Scholar
  5. 5.
    A. Dobado, F.J. Llanes-Estrada, hep-ph/0609255, to appear in Eur. Phys. J. CGoogle Scholar
  6. 6.
    J.W. Chen, E. Nakano, Phys. Lett. B 647, 371 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S. Laha, T. Gangopadhyay, M. Bagchi, M. Dey, J. Dey, M. Sinha, S. Ray, hep-ph/0702086Google Scholar
  8. 8.
    T.D. Cohen, hep-th/0702136Google Scholar
  9. 9.
    S. Weinberg, Physica A 96, 327 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    A. Dobado, J. Morales, Phys. Rev. D 52, 2878 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    O. Gunnarson, Rev. Mod. Phys. 69, 575 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    P. Danielewicz, M. Gyulassy, Phys. Rev. D 31, 53 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  1. 1.Departamento de Física Teórica IUniversidad Complutense de MadridMadridSpain

Personalised recommendations