The European Physical Journal C

, Volume 51, Issue 4, pp 891–897 | Cite as

The productions of the top-pions and top-Higgs associated with the charm quark at the hadron colliders

  • Wenna Xu
  • Xuelei WangEmail author
  • Zhen-jun Xiao
Regular Article - Theoretical Physics


In the topcolor-assisted technicolor (TC2) model, the typical physical particles, top-pions and top-Higgs, are predicted and the existence of these particles could be regarded as robust evidence for the model. These particles are accessible at the Tevatron and LHC, and furthermore the flavor-changing (FC) feature of the TC2 model may provide us with a unique opportunity to probe them. In this paper, we study some interesting FC production processes of top-pions and top-Higgs particles at the Tevatron and LHC, i.e., cΠt- and cΠt0(ht0) productions. We find that the light charged top-pions are not favorable by the Tevatron experiments, and the Tevatron has little capability to probe the neutral top-pion and top-Higgs particles via these FC production processes. At LHC, however, the cross section can reach the level of 10–100 pb for cΠt- production and 10–100 fb for cΠt0(ht0) production. So one can expect that enough signals could be produced at the LHC experiments. Furthermore, the SM backgrounds should be clean due to the FC feature of the processes, and the FC decay modes Πt-→bc̄, Πt0(ht0)→tc̄ can provide us with the signal typical for the detection of the top-pions and top-Higgs particles. Therefore, one may have hope to find the signal of top-pions and top-Higgs particles with the running of LHC via these FC processes.


Large Hadronic Collider Hadron Collider Decay Mode Charm Quark Charged Higgs Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Weinberg, Phys. Rev. D 19, 1277 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    L. Susskind, Phys. Rev. D 20, 2619 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    C.T. Hill, Phys. Lett. B 345, 483 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    K. Lane, E. Eichten, Phys. Lett. B 352, 382 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    C.T. Hill, K. Lane, Phys. Lett. B 433, 96 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    K. Lane, Phys. Rev. D 54, 2204 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    G. Cvetic, Rev. Mod. Phys. 71, 513 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    G. Buchalla, G. Burdman, C.T. Hill, Phys. Rev. D 53, 5185 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    X.L. Wang, Q.P. Qiao, Q.L. Zhang, Phys. Rev. D 71, 095012 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    X.L. Wang, Y.L. Yang, B.Z. Li, Phys. Rev. D 69, 055002 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    X.L. Wang, B.Z. Li , Y.L. Yang, Phys. Rev. D 67, 035005 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    X.L. Wang, Y.L. Yang, B.Z. Li, L.D. Wan, Phys. Rev. D 66, 075013 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    X.L. Wang, N.H. Song, L.L. Yu, J. Phys. G 31, 1507 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    X.L. Wang, L.L. Du, W.N. Xu, Commun. Theor. Phys. 43, 133 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    C.X. Yue, Q.J. Xu, G.L. Liu, J.T. Li, Phys. Rev. D 63, 115002 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    X.L. Wang, X.X. Wang, Phys. Rev. D 72, 095012 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    A.K. Lerbovich, D. Rainwater, Phys. Rev. D 65, 055012 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    C.X. Yue, Z.J. Zong, L.L. Xu, J.X. Chen, Phys. Rev. D 73, 015006 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    X.L. Wang, L.L. Yu, N.H. Song, W.N. Xu, Mod. Phys. Lett. A 21, 2833 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    X.L. Wang, L.L. Yu, N.H. Song, X.X. Wang, F.C. Jiang, Commun. Theor. Phys. 45, 521 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    X.L. Wang, B.Z. Li, Y.L. Yang, Phys. Rev. D 68, 115003 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    X.L. Wang, Y.L. Yang, B.Z. Li, C.X. Yue, J.Y. Zhang, Phys. Rev. D 66, 075009 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    H.J. He, C.P. Yuan, Phys. Rev. Lett. 83, 28 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    G.R. Lu, F.R. Yin, X.L. Wang, L.D. Wan, Phys. Rev. D 68, 015002 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    G. Burdman, Phys. Rev. Lett. 83, 2888 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    J.J. Cao, Z.H. Xiong, J.M. Yang, Phys. Rev. D 67, 071701 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    C.X. Yue, Z.J. Zong, J. Phys. G 31, 401 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    W.N. Xu, X.L. Wang, Z.J. Xiao, hep-ph/0612063Google Scholar
  29. 29.
    Particle Data Group, W.-M. Yao et al., J. Phys. G 33, 1 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    X.L. Wang, W.N. Xu, L.L. Du, Commun. Theor. Phys. 41, 737 (2004)CrossRefGoogle Scholar
  31. 31.
    R.-D. Heuer, hep-ph/0106315Google Scholar
  32. 32.
    J.A. Conley, J. Hewett, M.P. Le, Phys. Rev. D 72, 115014 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  1. 1.Department of Physics and Institute of Theoretical PhysicsNanjing Normal UniversityNanjingP.R. China
  2. 2.College of Physics and Information EngineeringHenan Normal UniversityXinxiangP.R. China

Personalised recommendations