Advertisement

The European Physical Journal C

, Volume 51, Issue 4, pp 933–943 | Cite as

Spin correlations in decay chains involving W bosons

  • J.M. SmillieEmail author
Regular Article - Theoretical Physics

Abstract

We study the extent to which spin assignments of new particles produced at the LHC can be deduced in the decay of a scalar or fermion C into a new stable (or quasi-stable) particle A through the chain C→B±q, B±→AW±, W±→ℓ±ν where ℓ=e,μ. All possible spin assignments of the particles A and B are considered. Explicit invariant mass distributions of the quark and lepton are given for each set of spins, valid for all masses. We also construct the asymmetry between the chains with a W- and those with a W+. The Kullback–Leibler distance between the distributions is then calculated to give a quantitative measure of our ability to distinguish the different spin assignments.

Keywords

Large Hadron Collider Charged Lepton Decay Chain Invariant Mass Distribution Higgs Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001) [hep-ph/0012100]ADSCrossRefGoogle Scholar
  2. 2.
    N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Lett. B 513, 232 (2001) [hep-ph/0105239]ADSCrossRefGoogle Scholar
  3. 3.
    A.J. Barr, Phys. Lett. B 596, 205 (2004) [hep-ph/0405052]ADSCrossRefGoogle Scholar
  4. 4.
    T. Goto, K. Kawagoe, M.M. Nojiri, Phys. Rev. D 70, 075016 (2004) [hep-ph/0406317]ADSCrossRefGoogle Scholar
  5. 5.
    J.M. Smillie, B.R. Webber, JHEP 10, 069 (2005) [hep-ph/0507170]ADSCrossRefGoogle Scholar
  6. 6.
    M. Battaglia, A. Datta, A. De Roeck, K. Kong,K.T. Matchev, JHEP 07, 033 (2005) [hep-ph/0502041]ADSCrossRefGoogle Scholar
  7. 7.
    A. Datta, K. Kong, K.T. Matchev, Phys. Rev. D 72, 096006 (2005) [hep-ph/0509246]ADSCrossRefGoogle Scholar
  8. 8.
    A. Datta, G.L. Kane, M. Toharia, hep-ph/0510204Google Scholar
  9. 9.
    A.J. Barr, JHEP 02, 042 (2006) [hep-ph/0511115]ADSCrossRefGoogle Scholar
  10. 10.
    A. Alves, O. Eboli, T. Plehn, hep-ph/0605067Google Scholar
  11. 11.
    H.-C. Cheng, K.T. Matchev, M. Schmaltz, Phys. Rev. D 66, 056006 (2002) [hep-ph/0205314]ADSCrossRefGoogle Scholar
  12. 12.
    C. Athanasiou, C.G. Lester, J.M. Smillie, B.R. Webber, JHEP 06, 082 (2006) [hep-ph/0605286]Google Scholar
  13. 13.
    P. Meade, M. Reece, hep-ph/0601124Google Scholar
  14. 14.
    L.-T. Wang, I. Yavin, hep-ph/0605296Google Scholar
  15. 15.
    H.-C. Cheng, I. Low, JHEP 08, 061 (2004) [hep-ph/0405243]ADSCrossRefGoogle Scholar
  16. 16.
    H.-C. Cheng, K.T. Matchev, M. Schmaltz, Phys. Rev. D 66, 036005 (2002) [hep-ph/0204342]ADSCrossRefGoogle Scholar
  17. 17.
    B.C. Allanach et al., Eur. Phys. J. C 25, 113 (2002) [hep-ph/0202233]ADSCrossRefGoogle Scholar
  18. 18.
    G. Corcella et al., JHEP 01, 010 (2001) [hep-ph/0011363]ADSCrossRefGoogle Scholar
  19. 19.
    G. Corcella et al., hep-ph/0210213Google Scholar
  20. 20.
    S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, JHEP 04, 028 (2002) [hep-ph/0204123]ADSCrossRefGoogle Scholar
  21. 21.
    A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Phys. Lett. B 443, 301 (1998) [hep-ph/9808371]ADSCrossRefGoogle Scholar
  22. 22.
    S. Kullback, R.A. Leibler, Ann. Math. Stat. 22, 79 (1951)CrossRefGoogle Scholar
  23. 23.
    V. Hankele, G. Klamke, D. Zeppenfeld, T. Figy, Phys. Rev. D 74, 095001 (2006) [hep-ph/0609075]ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2007

Authors and Affiliations

  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations